
Text Preparation through
Extended Tokenization

Data Mining and Information Engineering
11. – 13. July 2006, Prague

Marcus Hassler
Günther Fliedl

Marcus Hassler Text Preparation through Extended Tokenization 2

Overview

Introduction
Token Concepts
Extended Tokenization
Token Typing
JavaTok
Conclusion

Marcus Hassler Text Preparation through Extended Tokenization 3

Introduction

Tokenization
first step of NL text preparation
stream of characters stream of tokens (processing units)

Supports any further NLP task
Tagging, Named Entity Recognition, Parsing, etc.

Task taken for granted
already solved problem
theoretically uninteresting
without large impact (e.g., Information Retrieval)

Marcus Hassler Text Preparation through Extended Tokenization 4

Introduction

Standard tokenization algorithm
1) split strings separated by blanks / linefeeds
2) split all punctuation marks (‘.’, ‘!’, ‘?’) ending those strings

Difficulties of the standard algorithm
unclear token borders: doesn’t
sentence borders: der 15. Platz, semicolons
abbreviations: e.g., etc.

Assumptions
language independent
domain independent
application independent

Marcus Hassler Text Preparation through Extended Tokenization 5

Token Concepts

Single-tokens
Strings without non-printable or delimiting characters
Examples:

single words: car, information, Sidney
numbers: 12345, 12.43, 8,45
internet addresses: http://www.google.com

Multi-tokens
Strings through interpretation (may contain delimiters)
Examples:

composite nouns: traffic jam, information retrieval
special formats: +43 463 2700-3511, ISDN-12 34567 / 89
named entities: United States of America
formulas: $x = x+1$

http://www.google.com/

Marcus Hassler Text Preparation through Extended Tokenization 6

Extended Tokenization

Do as much as possible on STRING level, but not
more!

Extended Tokenization process
1) identify single-tokens (standard tokenization)
2) type single-tokens
3) identify sentence end markers
4) reinterpret single-token types
5) merge and split tokens recursively (multi-tokens)
6) reinterpret any token type

Marcus Hassler Text Preparation through Extended Tokenization 7

Extended Tokenization

Incorporate many kinds of linguistic knowledge like
semantically motivated string patterns

e.g., phone numbers, serial codes, dates, URLs
dictionaries

e.g., abbreviations, names
morphosyntactic and sentence related rules

e.g., derivation (cold - coldness), composition
(scarface), capitalized term must start a new sentence

Resources
language dependent
domain specific
application oriented

Marcus Hassler Text Preparation through Extended Tokenization 8

Token Typing

Pre-linguistic classification process

3 step typing process
1) type single-tokens (basic token types)
2) reinterpret single-token types (user-defined

token types)
3) reinterpret token types (user-defined token

types)

Marcus Hassler Text Preparation through Extended Tokenization 9

Token Typing: Basic Types

Assigned straight-forward

Basic token types (4)
alphabetics: test, Test, TEST, TesT
numerics: 123, 12.3, 1,23, 12:34
punctuation marks

sentence end marker
sentence-internal marks like comma
pair wise markers like brackets and quotes

mixtures
ending with sentence end marker
starting/ending with hyphen
containing slashes / hyphens
containing numbers
others

Marcus Hassler Text Preparation through Extended Tokenization 10

Token Typing: User-defined Types

User-defined Token Types
expressed through strings
identified by rules and minimal dictionary knowledge

Includes
domain knowledge

e.g., knowledge about data warehouses
gazetteer knowledge

e.g., country names, organization names
expert knowledge

e.g., medicine
pure linguistic knowledge

e.g., morphological and syntactical rules

Marcus Hassler Text Preparation through Extended Tokenization 11

Token Typing: User-defined Types

Examples
abbreviations
acronyms
dates and times
phone numbers
email addresses
sequences of capitalized single-tokens (NE candidates)
stopwords
etc.

Marcus Hassler Text Preparation through Extended Tokenization 12

JavaTok

Prototype
fully implemented in Java
part of the NLP toolset actually developed
online demo available at: http://nlp.ifit.uni-klu.ac.at/NLP/

Features
free configuration and adaptation (UTF-16)
completely rule-based with dictionary support
enables user-defined token type definition
string replacements (abbreviation resolution, zero
elimination, thesaurus, ...)
pre-tagging functionality (based on token types)
multiple output formats (TXT, HTML, XML)

http://nlp.ifit.uni-klu.ac.at/NLP/

Marcus Hassler Text Preparation through Extended Tokenization 13

JavaTok

Rules
applied on token strings, token types, or both
support RegEx matching / substitution
access arbitrary long sequence of tokens

Examples
suffix identification of well-known endings (e.g., -ly, -ness).
identification and reconcatenation of hyphenated words
sentence border disambiguation
multi-token identification
special character treatment, e.g., & % $ § ° ‘ \ /

Marcus Hassler Text Preparation through Extended Tokenization 14

JavaTok

Example text output for
The Red Cross is aka. RK.

S = single-token typing, M = multi-token typing, R = replacement of strings

Marcus Hassler Text Preparation through Extended Tokenization 15

JavaTok

Preliminary results
improvements of tagging outputs for

Stanford ME tagger
openNLP Tools ME tagger
QTag

Corpus-based training (rule generation)
INEX (INitiative for the Evaluation of XML retrieval) collection

Further steps
large scale evaluation
compare results to others

Marcus Hassler Text Preparation through Extended Tokenization 16

Conclusion

Proper tokenization is crucial for any
further NLP task

Relies on the token definition

Supported by rule-based token typing

Online implementation JavaTok
http://nlp.ifit.uni-klu.ac.at/NLP/

http://nlp.ifit.uni-klu.ac.at/NLP/

	Text Preparation through�Extended Tokenization
	Overview
	Introduction
	Introduction
	Token Concepts
	Extended Tokenization
	Extended Tokenization
	Token Typing
	Token Typing: Basic Types
	Token Typing: User-defined Types
	Token Typing: User-defined Types
	JavaTok
	JavaTok
	JavaTok
	JavaTok
	Conclusion

