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Introduction

Tokenization
first step of NL text preparation
stream of characters stream of tokens (processing units)

Supports any further NLP task
Tagging, Named Entity Recognition, Parsing, etc.

Task taken for granted
already solved problem
theoretically uninteresting
without large impact (e.g., Information Retrieval)
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Introduction

Standard tokenization algorithm
1) split strings separated by blanks / linefeeds
2) split all punctuation marks (‘.’, ‘!’, ‘?’) ending those strings

Difficulties of the standard algorithm
unclear token borders: doesn’t
sentence borders: der 15. Platz, semicolons
abbreviations: e.g., etc.

Assumptions
language independent
domain independent
application independent
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Token Concepts

Single-tokens
Strings without non-printable or delimiting characters
Examples:

single words: car, information, Sidney
numbers: 12345, 12.43, 8,45
internet addresses: http://www.google.com

Multi-tokens
Strings through interpretation (may contain delimiters)
Examples:

composite nouns: traffic jam, information retrieval
special formats: +43 463 2700-3511, ISDN-12 34567 / 89
named entities: United States of America
formulas: $x = x+1$

http://www.google.com/
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Extended Tokenization

Do as much as possible on STRING level, but not 
more!

Extended Tokenization process
1) identify single-tokens (standard tokenization)
2) type single-tokens
3) identify sentence end markers
4) reinterpret single-token types
5) merge and split tokens recursively (multi-tokens)
6) reinterpret any token type
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Extended Tokenization

Incorporate many kinds of linguistic knowledge like
semantically motivated string patterns

e.g., phone numbers, serial codes, dates, URLs
dictionaries

e.g., abbreviations, names
morphosyntactic and sentence related rules

e.g., derivation (cold - coldness), composition 
(scarface), capitalized term must start a new sentence

Resources
language dependent
domain specific
application oriented
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Token Typing

Pre-linguistic classification process

3 step typing process
1) type single-tokens (basic token types)
2) reinterpret single-token types (user-defined 

token types)
3) reinterpret token types (user-defined token 

types)
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Token Typing: Basic Types

Assigned straight-forward

Basic token types (4)
alphabetics: test, Test, TEST, TesT
numerics: 123, 12.3, 1,23, 12:34
punctuation marks

sentence end marker
sentence-internal marks like comma
pair wise markers like brackets and quotes

mixtures
ending with sentence end marker
starting/ending with hyphen
containing slashes / hyphens
containing numbers
others
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Token Typing: User-defined Types

User-defined Token Types
expressed through strings
identified by rules and minimal dictionary knowledge

Includes
domain knowledge

e.g., knowledge about data warehouses
gazetteer knowledge

e.g., country names, organization names
expert knowledge

e.g., medicine
pure linguistic knowledge

e.g., morphological and syntactical rules
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Token Typing: User-defined Types

Examples
abbreviations
acronyms
dates and times
phone numbers
email addresses
sequences of capitalized single-tokens (NE candidates)
stopwords
etc.
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JavaTok

Prototype
fully implemented in Java
part of the NLP toolset actually developed
online demo available at: http://nlp.ifit.uni-klu.ac.at/NLP/

Features
free configuration and adaptation (UTF-16)
completely rule-based with dictionary support
enables user-defined token type definition
string replacements (abbreviation resolution, zero 
elimination, thesaurus, ...)
pre-tagging functionality (based on token types)
multiple output formats (TXT, HTML, XML)

http://nlp.ifit.uni-klu.ac.at/NLP/
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JavaTok

Rules
applied on token strings, token types, or both
support RegEx matching / substitution
access arbitrary long sequence of tokens

Examples
suffix identification of well-known endings (e.g., -ly, -ness).
identification and reconcatenation of hyphenated words
sentence border disambiguation
multi-token identification
special character treatment, e.g., & % $ § ° ‘ \ /
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JavaTok

Example text output for
The Red Cross is aka. RK.

S = single-token typing, M = multi-token typing, R = replacement of strings
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JavaTok

Preliminary results
improvements of tagging outputs for

Stanford ME tagger
openNLP Tools ME tagger
QTag

Corpus-based training (rule generation)
INEX (INitiative for the Evaluation of XML retrieval) collection

Further steps
large scale evaluation
compare results to others
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Conclusion

Proper tokenization is crucial for any
further NLP task

Relies on the token definition

Supported by rule-based token typing

Online implementation JavaTok
http://nlp.ifit.uni-klu.ac.at/NLP/

http://nlp.ifit.uni-klu.ac.at/NLP/
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