Approaches to Translating Natural Language
Queries for use in XML Information Retrieval
Systems

Xavier Tannier Alan Woodley
Ecole des Mines Queensland University of
Saint-Etienne, France Technology

Brisbane, Australia

Shlomo Geva Marcus Hassler
Queensland University of Universitdat Klagenfurt
Technology Klagenfurt, Austria

Brisbane, Australia

Abstract

XML information retrieval (XML-IR) systems aim to provide users
with relevant results that are more specific than documents. To inter-
act with XML-IR systems, users must express both their content and
structural requirements in the form of a structured query, using formal
languages such as XPath or NEXI. Natural language queries (NLQs)
are a more intuitive alternative. Here, we present three approaches
that analyse NLQs and translate them into a formal language (NEXT)
query. The approaches participated in INEX’s 2005 NLP track, where
they performed strongly, even outperforming a baseline that consisted
of manually constructed NEXI expressions. This suggests that further
collaboration between NLP and XML-IR could be mutually beneficial.

1 Introduction

Information retrieval (IR) systems respond to user queries (historically two
or three keywords, expressing desired content) with a ranked list of relevant
documents. However, this does not guarantee user satisfaction since in many
cases only some portions of documents contain relevant information. Yet,
this transaction has remained unchanged since the earliest days of IR, partly
since the documents retrieved by most IR systems usually contain little or

<article>

<author>Roger Fuller</author>

<title>Toward a robust Martian-English

translator</title>

<section title="Introduction" >
<paragraph>Because of a dramatic
lack of interpreters, Communication
between <bold>Martians</bold>
and <bold>Terrestrians</bold> is
confronted to. .. </paragraph>

</section>

<section title="Morphology" >

</section>

</article>

Figure 1: XML representation of a science article.

no underlying structural information (and while HTML documents contain
structure, most HT'ML tags relate solely to document presentation rather
than to semantic inference on part of the author).

In comparison with flat text documents, XML articles explicitly sepa-
rate content, structure and form (see Figure 1). The recent prominence of
XML markup has lead to IR systems specifically geared towards collections
of XML documents. With their hierarchical structure, XML documents pro-
vide an opportunity to improve upon the traditional paradigm of IR with a
new retrieval unit: the document component (formally marked up by tags
in XML documents). The new challenge of XML-IR is then to find the best
compromise between the component’s degree of relevance (or exhaustive-
ness) and its specificity to a query topic.

Owing to these characteristics, XML-IR combines features from tradi-
tional information retrieval (IR) and from database retrieval. Like tradi-
tional IR, it responds to queries with a ranked list of relevant results, and
like database retrieval (but unlike traditional IR) it requires a mean to ex-
press both content and structural needs if users are to take full advantage
of XML-IR systems. For this reason, formal structured query languages
(akin to SQL for databases) have been designed. Some examples of these
languages are XQuery [16], XPath [15] and NEXI [14]. Unfortunately, these
formal languages have proven problematic for several reasons: they are very
complex and difficult to use even by experienced, let alone casual users; are
too closely bound to the underlying physical structure of the collection; and

do not scale well across multiple or heterogenous collections.

Recent research has investigated the idea of using the specifics of XML
retrieval to allow users to address content and structural needs intuitively
via natural language queries (NLQs). Here, we present the motivations
for this research (Section 2), as well as three systems that analyse NLQs
and translate them to an existing formal language (NEXI — Section 3). The
systems performed strongly, at times outperforming a baseline that consisted
of a set of manually constructed NEXI expressions (Section 4). These results
provide the best indication yet of the potential for NLQs to become a viable
alternative to XML-IR systems, and, as we discuss towards the end of the
paper (Section 5), indicates that further collaboration between NLP and
XML-IR communities could be mutually beneficial.

2 Motivation

We are not going to detail the general motivations for applying natural
language processing techniques to information retrieval. These applications
have been extensively studied [11, 2, 12]. The issues outlined in this section
are specific to structured IR. Some of them are also important in the domain
of databases, but we will see that natural language interfaces for database
and for XML collections correspond to different needs and have different
traits.

The first motivation for designing natural language interfaces for XML
retrieval is that expressing an information need in a structured language,
with formalized semantics and grammar, is too difficult for many users.
O’Keefe and Trotman [9] investigated five structured query languages (Hy-
Time, DSSSL, CSS, XPath, XIRQL) and concluded that all of them were
too complicated to use. During the INEX 2003 campaign, where queries
were built by experts in IR, XPath [15] was used to represent the informa-
tion needs, and 63% of the proposed queries had major semantic or syntactic
errors, requiring up to 12 rounds of corrections. This led to the adoption of
NEXI, a simplified language, in 2004. That year, the number of revisions
decreased and the error rate dropped to 12%. But this is still high for ex-
perts. Whether for casual or expert users, everyday (“natural”) language
seems to be the easiest and most intuitive way to express an information
need.

Secondly, formal query languages require an intimate knowledge of a
document’s structure and semantics. For instance, in order to retrieve in-
formation from abstracts, sections or bibliographic items, users need to know

whether these elements are properly identified in the structure, and what
the corresponding markup tags are (for example <abs>, <sec> and <bb>
respectively). This information is contained in the DTD or Schema, but
this is another language to learn and more information to remember (for
instance the INEX DTD contains 192 different content models).

Thirdly, single formal queries do not scale well for information retrieval in
heterogenous collections (collections with different DTDs or Schemas) since
different collections often use different markup tags for the same retrieval
unit (for example: paragraph could be <p>, <para> or <paragraph>).
A natural language interface could resolve this problem, since users could
express their information need conceptually. This is then translated into
several formal queries (one per DTD).

Finally, in structured documents, a well-thought and semantically strong
structure formally marks up the meaning of the text; this can make it easier
to “understand” queries. For example, given the keyword Washington’ a
well structured document can more easily identify the difference between
the American President, City, State or Monument. Moreover, a system can
introduce appropriate structural constraints even if these constraints have
not been specified by the user.

2.1 Positioning in NLP for Information Seeking

Information retrieval can accomplish the following types of missions involv-
ing a search engine [8]: Known item search, where users know what elements
(records) they are looking for, and can recognize them if seen, is a mission
carried out by database querying. Specific information search, where users
want some specific information but do not necessarily know where to find it,
is fulfilled by question-answering systems. Finally, in general information
search, the user is interested in a subject in general, with several ways to
describe it, and several ways to represent the desired information. This is

the field of information retrieval. This section briefly outlines the role of
NLP in these fields.

2.1.1 NLP and Information Retrieval

At first, it seems only logical that NLP and traditional IR would comple-
ment each other. However, incorporating NLP techniques within IR has
been surprisingly ineffective [12]. NLP techniques are rarely used within
traditional IR (with the exception of low-level techniques such as phrase
indexing, stemming and spelling correction).

One possible explanation for this is that IR systems do not have to
understand the queries that are submitted to them. Rather, they have to
match queries to relevant documents, usually by just matching the query
terms to document terms (or some variation thereof). Since most relevant
documents tend to contain a large number of occurrences of query terms,
statistical rather than linguistic methods have proven successful. However,
information seeking areas that deal with much smaller text regions such
as Question and Answering (QA) make stronger user of NLP. And since
XML-IR is conceptually between traditional IR and QA, we believe that
incorporating NLP techniques should also be successful.

2.1.2 NLP and Databases

Many natural language interfaces for databases have been developed, most
of them transforming natural language into Structured Query Language
(SQL) [1, 3, 10]. But the problems are different:

e Unlike databases, XML format looks set to be used and accessed by the
general public, notably through the Internet. Although unambiguous,
machine-readable, structured and formal query languages are neces-
sary to support the retrieval process (in order to actually extract the
answers), the need for simpler interfaces will become more and more
important in the future.

e Database querying is a strict interrogation; it is not information re-
trieval. The user knows what kind of information is stored in the
database, the information need is precise, and a correct query neces-
sarily leads to a correct answer. An erroneous interpretation of the
request leads to totally useless results - or to no results at all. This
means that the natural language analysis must interpret the query per-
fectly and unambiguously, failing which the final answer is incorrect
and the user dissatisfied. For this reason, natural language interfaces
for databases notably only apply to restricted domains (as geographic
databases) with a restricted language (the answer to a query is often
“I did not understand your query”).

In contrast, in XML-IR, as well as in traditional IR, the information
need is loosely defined and often there is no perfect answer to a query.
A natural language interface is a part of the retrieval process, and
thus it can interpret some queries imperfectly, and still return useful
results. We can even imagine an interface getting better results than
manual queries (which makes no sense in databases).

e Moreover, information retrieval does not require any operation on data
(calculation, concatenation, aggregation, restructuring...). The an-
swer is a set of XML elements that are part of the collection.

In return, NLIs for XML-IR are expected to analyse all queries, even par-
tially or imperfectly, written in an unrestricted natural language, and for
more general applications.

Therefore, developing NLIs for XML-IR is a separate research domain
requiring its own innovative solutions.

2.1.3 NLP and QA Systems

In question-answering (QA) systems users ask closed questions, requiring a
short and factual answer “When did Napoleon die?” — “in 1821”. Systems
must select a relevant segment of text in the collection. In XML-IR the
retrieval unit, although more flexible than traditional IR, is still formally
delimited by the document’s underlying structure, and the information need
is more general, represented by open requests. Nevertheless, it is conceivable
that there may be some common queries that concern small elements (such
as publication date). Moreover, XML-IR could serve as an effective passage
retrieval pre-processing step in QA.

2.2 INEX’s NLP Track and NLQ2NEXI Task
2.2.1 INEX and NEXI

The INitiative for the Evaluation of XML Retrieval (INEX)! provides a
framework for evaluating XML-IR systems: a test collection consisting of
over 700 Mbytes of XML documents, topics and human relevance assess-
ments.

Figure 2 is an example of an INEX topic. The format of INEX topics
is based on TREC topics and contains an initial topic statement, (cas)title,
description and narrative, all of which express users’ information need. Cur-
rently the <castitle> and <description> elements are used, respectively,
as queries in the Ad-hoc and NLP tracks. The <InitialTopicStatement>
and <narrative> are used by INEX human judges during the assessment
phase. The < castitle> represents users’ information need as a formal XPath-
like language (CAS) called Narrowed Extended XPath I (NEXI [14]). The
<description> expresses users’ need in a natural language (e.g. English),

http://inex.is.informatik.uni-duisburg.de/2005/

<inex_topic topic_id="256" query_type="CAS">

<InitialTopicStatement>Find Infor-

mation regarding data embedding using

watermarking.</InitialTopicStatement>

<title></title>

<castitle>
//article[about(.//p,” data embedding”)]
//plabout(.,watermarking)]

</castitle>

<description>
We are looking for paragraphs describing
watermarking in articles which describe
data embedding.

</description>

<narrative>
In today’s world the issue of data security
is highly significant. One such technique
to ensure data security is steganography
where data is embedded in various media
files [...]

</narrative>

</inex_topic>

Figure 2: Example of INEX query.

and is (hopefully) a faithful translation of the title. The syntax of NEXI
is similar to XPath [15], however, it only uses descendant axis step, and
extends XPath by incorporating an ”about” clause to provide IR flavour to
queries. NEXTI’s syntax is:

//Alabout(//B,C)]

where A is the context path, B is the relative path and C is the content
requirement.

It is possible for a single NEXI query to contain more than one informa-
tion request. Therefore the query presented in Figure 2:

//article[about(.//p, "data embedding”)]//p[about(.,watermarking)]
contains two information requests (also called sub-topics):
//article//p[about(.,watermarking)]
And:
//articlefabout(.//p, "data embedding”)]

runl
run 2
run 3

description NEXI 1
p NEX| 2 —=
(English) NEX| 3 —»

~ —

castitl ee
(manual
NEXI)

Figure 3: NLQ2NEXI.

In NEXI each information request is specified by an ’about’ clause. However,
elements matching the rightmost ’about’ clause, here the first request, are
returned to the user. INEX refers to these requests and elements as ”target
requests” and ”target elements”. Elements that match the other "about”
clauses, here the second request, are used to support the return elements in
ranking. We refer to these requests and elements as ”support requests” and
”support elements”. In order to be valid, each NEXI query must have at
least one target request, along with any number of support requests.

2.2.2 INEX NLP Track

The INEX NLP track has run for 2004 and 2005. In 2004, participants
produced complete NLQ XML-IR systems that accepted natural language
queries as input and produced a ranked list of XML elements as output. This
procedure was identical to that of INEXs main Ad-hoc track, with the excep-
tion that natural language (description) rather than formal queries (castitle)
were used as input. In 2005, an additional NLQ2NEXI task was added. Par-
ticipants in the NLQ2NEXI task accepted natural language queries as input
and produced NEXI queries as output. The NEXI queries were executed on
an existing Ad-hoc XML-IR system (GPX [6]) that produced a ranked list
of XML elements. Then, the result lists were evaluated using a standard
module as if they were traditional Ad-hoc submissions (see Figure 3). This
approach was adopted for three reasons.

First, it provided for a more meaningful comparison between systems
since evaluation was made solely on how well the systems translated NLQs
to NEXI. Previously, complete NLQ XML-IR systems were compared. Per-
formance was dependent upon how well systems translated the natural lan-
guage queries to a formal language, and then by how well the backend XML-
IR system was able to execute the queries. This is problematic since the per-
formance in one of the steps could obfuscate the performance in the other.
Keeping the backend constant removed this problem.

find sections| that discuss dogs [in documentsfabout animals
VWV NN WDT VWV NN |IN NN IN NN

structural rules textual rules

//artucle[about(anumals)]//sec[about(,dogs)]

s_rule_1(>.~,”find”//VV {sec}//NN) > //sec
s_rule_2(”.7,%in” {doc}//NN) > //article
t_rule_1(”.7,”that” “discuss®//VV) -> [about(.,dogs)]
t_rule_2(”.7,”about?”) - [about(.,animals)]

Figure 4: Query analysis with template matching.

Second, it introduced a standard baseline across all participants (here, a
corresponding set of manually constructed ad-hoc track NEXI expressions).
Previously, participants could only study the relative performance of NLQ
systems. However, it is vital that participants are able to compare perfor-
mance with a set of manually constructed NEXI expressions as it indicates
the costs and benefits of using NLQs rather than formal language queries.

Third, it provided a lower cost of entry for participation. Despite the
success of workshops such as TREC and INEX, some of their tracks have
a relatively low number of participants. A possible explanation for this
situation is that such workshops often require a considerable commitment,
particularly for first time participants. Previously, participants had to pro-
duce two systems: one to handle to translation from NLQ to NEXI, and a
second to accept the NEXI queries and produce results lists. But using a
single backend system meant participants could focus on producing NLQ to
NEXI translators.

3 The Approaches

Here, we present a selection of techniques used to translate NLQs to NEXI
in INEX 2004 and 2005. While each of the approaches is different, they
all contain four main stages: Detecting structural and content constraints,
determining structural requirements, determining content requirements and
finally NEXI query production.

3.1 Detecting Structural and Content Constraints

The first stage is to distinguish a query’s structural constraints from content
constraints (that will be expressed in the ’about’ clause in NEXI). Hassler
sets up a template matching based on words and parts-of-speech (see Fig-
ure 4). Links between structural elements and content are not linguistically
motivated, it is assumed that content is included in the last introduced ele-
ment. This technique is very efficient for queries expressed in a traditional
way (i.e. constructions that have been recorded by the system). It avoids
syntactic ambiguities but lacks robustness. Woodley and Geva [17] add a
shallow syntactic parsing before applying the same kind of template match-
ing. They deal with negations, strengtheners and a few forms of anaphora.
Tannier [13] uses a deep syntactic analysis, complemented by some specific
semantic rules concerning query structure (“find + object”, “deal with”,
etc.). This method allows treatment of (even imperfectly) non-anticipated
constructions, but needs a heavy disambiguation process.

3.2 Structure Analysis

The second stage is to map structural constraints to corresponding XML
markup tags. For this stage lexical knowledge about collection structure is
necessary, especially since the tags in the XML documents are rarely ”real”
words or phrases, but rather abbreviations (<sec> for sections), acronyms
(<st> for section titles) or a loose amalgamation of two (<atl> for article
titles). Furthermore, a single tag can be referred to by different names (for
example: “document”, “article”, “work” for a scientific article).

Grammatical knowledge can be added [13] in order to recognized some
frequent linguistic constructions that implicitly refer to structure (the agent
of the verb “to write” is an author (<au>), the object of “to cite” is a
bibliographic item (<bb>), etc.).

Unlike database querying, XML NLIs do not require domain-dependant
knowledge (although this is a potentially fruitful path to follow).

3.3 Content Analysis

The third stage is to derive users’ content requirements, as either terms
or phrases. Noun phrases are particularly useful in information retrieval.
They are identified as specific sequences of parts-of-speech [17]. Tannier [?]
is also able to use content terms to set up a contextual search along the
entire structure of the documents (see Figure 5).

10

a section about (navigation systems for automobiles)

article

[title |
|abstract automobiles *

section
\ T on does not contain
secti L
explicitly
navigation systems / 4 "automobile"
but is still relevant

Figure 5: Contextual search.

3.4 NEXI Query Formulation

The final stage of translation is the formulation of NEXI queries. The target
request is formulated first and then each of the support requests is “inserted”
by finding their longest shared descendant. Following NEXI format, con-
tent terms are delimitated by spaces, with phrases surrounded by quotation
marks.

4 Results

Here, we present the results from the 2005 INEX NLQ2NEXI Track. Two
types of structured NLQs were used for INEX 2005: COS queries that repre-
sented a simple information need (such as ”curricula vitae about information
retrieval students”) and CAS queries that represented a more complex infor-
mation need involving one or more support requests (such as the examples
of queries used throughout this paper).

Evaluation in XML-IR is more complex than traditional information re-
trieval because relevancy between ancestors and descendants is inherently
dependant, that is, if an element is relevant then so are its ancestor elements.
In contrast, traditional IR assumes independence between results. There-
fore, there exist several differences in assessing traditional and XML-IR.

Relevancy in XML retrieval is assessed over two dimensions: exhaustive-
ness which measures the extent to which an element satisfies the information
need and specificity that measures the focus of the element on the informa-
tion need. Relevancy is assessed on a graded (or continuous) rather than

11

| | Baseline | Hassler | Tannier | Woodley |

neCG[25]
Strict | 0.0903 | 0.0807 | 0.0329 | 0.0366
Gen 0.2541 0.2524 | 0.2146 0.1617
ep-gr
Strict | 0.0189 0.0221 | 0.0124 0.0123
Gen 0.0904 0.0864 | 0.0741 0.0611

Table 1: COS, Thorough subtask

binary scale by taking the product of the two exhaustiveness and specificity
scores. Here, we present the results of both the strict metric, that only re-
wards highly relevant and highly specific results, and the generalized metric,
that also rewards intermediate results. Metrics have to reflect the graded
relevance. In 2005, INEX used two metrics, the normalized extended Cu-
mulative Gain metric (nxCG) and the Effort-Precision Gain-Recall (ep—gr)
metric [7] .

For each task we compare each of the three approaches presented in the
previous section, and a fourth ”baseline” system which used a manually
constructed NEXI expression as input. Unfortunately, due to length con-
straints we are unable to present all results from INEX 2005. However, here
we present a summary of COS and CAS topics. A more detailed comparison
is available in the INEX 2005 Preproceedings [4].

4.1 COS Topics

Here, we present results from two of the COS subtasks: the Thorough sub-
task that dealt with retrieving all elements that matched an information
request, and the Focused subtask that dealt with exclusively retrieving the
most relevant element along a path and not any of its ancestors/descendants.
Tables 1 and 2 present the nxCG value at 25 results plus the ep-gr value
for each subtask. These results are promising since most of the time the
approaches are comparable (;0.8) with the baseline system. Particularly
promising is Hassler’s approach which many times outperformed the base-
line.

4.2 CAS Topics

We present results from four of the CAS subtasks. Each of the subtasks
relates to how structural constraints are evaluated with respect to the target
and support elements. A strict interpretation means that returned elements

12

| | Baseline | Hassler | Tannier | Woodley |

neCG[25]
Strict | 0.1088 | 0.1313 | 0.1023 | 0.0550
Gen 0.1998 | 0.1925 | 0.1853 | 0.1698
ep-gr
Strict | 0.0193 0.0268 | 0.0130 0.0222
Gen 0.0860 | 0.0774 | 0.0717 | 0.0693

Table 2: COS, Focussed subtask

| | Baseline | Hassler | Tannier | Woodley |

neCG[25]
Strict | 0.1578 0.1378 | 0.1378 0.1378
Gen 0.2885 | 0.3814 | 0.2693 | 0.2859
ep-gr
Strict | 0.0770 | 0.0740 | 0.0775 0.0755
Gen 0.1324 0.1531 | 0.1064 0.1051

Table 3: CAS, SSCAS subtask

| | Baseline | Hassler | Tannier | Woodley |

neCG[25]
Strict | 0.0662 | 0.0662 | 0.0662 0.0913
Gen 0.1081 0.1046 | 0.1004 0.1100
ep-gr
Strict | 0.0274 | 0.0267 | 0.0304 | 0.0267
Gen 0.0272 | 0.0287 | 0.0298 | 0.0311

Table 4: CAS, SVCAS subtask

markup tag must exactly match the user request. In contrast, a wvague
interpretation means that the element type does not need to exactly match
what the users requested. Each of these interpretations can be applied to
target and support elements in isolation, producing four subtasks called
SSCAS, SVCAS, VSCAS, VVCAS where the first character refers to the
target element interpretation (S)trict or (V)ague, and the second character
refers to the support element. Tables 3 to 6 present the nxCG value at 25
results and the ep-gr value for each subtask. Again, the NLP approaches
perform comparably to — and many times outperforming — the baseline. This
demonstrates the potential for NLIs as an alternative to formal language
interfaces in XML-IR.

13

| | Baseline | Hassler | Tannier | Woodley |

neCG[25]
Strict | 0.1267 0.1133 | 0.1133 0.1133
Gen 0.2531 0.2815 | 0.3051 0.2446
ep-gr
Strict | 0.0383 | 0.0338 | 0.0363 | 0.0340
Gen 0.0608 | 0.0641 | 0.0682 0.0632

Table 5: CAS, VSCAS subtask

| | Baseline | Hassler | Tannier | Woodley |

neCG[25]
Strict | 0.1267 0.1267 | 0.1867 0.1644
Gen 0.2281 0.2456 | 0.2572 0.2136
ep-gr
Strict | 0.0454 0.0372 | 0.0418 0.0483
Gen 0.0694 0.0740 | 0.0799 0.0742

Table 6: CAS, VVCAS subtask

5 Discussion

Previously, we have discussed the ”state—of-the—art” for NLP and XML-
IR. Here, we make a logical progression to discuss the future of NLP and
XML-IR, and how their continual integration will be mutually beneficial.

5.1 NLP and XML retrieval

The INEX NLP Track provides an opportunity for reviving the applications
of NLP in the field of IR. Historically, NLIs have been shown to be effective
in handling information needs. We believe that the specificities of XML
documents and their effects on IR will generate further innovations in search
interfaces. Furthermore, the combination of NLP and XML-IR will also
improve the retrieval process itself, as illustrated by the use of noun phrase
analysis for contextual search; this approach has shown promising results.
Finally, since XML-IR provides the possibility to retrieve very specific texts
from a large set of documents it can be helpful for traditional NLP fields
such as question-answering or automatic summarization.

14

5.2 NEXI extensions

Extensions of NEXI are planned in 2006 to introduce new features for
query formulation. The extensions aim at encouraging researchers from
other fields like NLP or ontology generation to participate in future NLP
tasks of INEX. It allows appending additional information to structural
and content constraints using a set of key:value pairs. Applied to struc-
tural constraints, it can be used to express the type of matching (e.g.
//section{MATCH:strict}). Furthermore, it offers the possibility to in-
clude linguistic knowledge to query terms and phrases. Thus, part-of-
speech tags (e.g. book{P0S:NN}), or morpho-syntactic information (e.g.
look{TIME:pres}) or semantic information as ontology/domain knowledge
(e.g., dog{SEM:anim}) can be expressed.

6 Conclusion

While the application of NLP XML-IR is in its infancy, it has already pro-
duced promising results. Here, we presented the specificities of XML re-
trieval and the necessity for creating NLIs for XML-IR systems. We sur-
veyed the different approaches that have been implemented so far, described
their results in the INEX 2005 campaign and discussed future directions of
this field. The results show that NLQs are potentially a viable alternative
to formal query languages and the integration of NLP and XML-IR, can be
mutually beneficial.

References

[1] I. Androutsopoulos, G.D. Ritchie, and P. Thanisch. Natural Language
Interfaces to Databases — An Introduction. Journal of Natural Language
Engineering, 1(1):29-81, 1995.

[2] Avi Arampatzis, Th.P. van der Weide, C.H.A. Koster, and P. van Bom-
mel. Linguistically-motivated Information Retrieval. In Allen Kent,

editor, Encyclopedia of Library and Information Science, volume 69,
pages 201-222. Marcel Dekker, Inc., New York, Basel, December 2000.

[3] Ann Copestake and Karen Sparck Jones. Natural Language Interfaces
to Databases. The Knowledge Engineering Review, 5(4):225-249, 1990.

[4] Norbert Fuhr, Mounia Lalmas, Saadia Malik, and Gabriella Kazai, ed-
itors. Advances in XML Information Retrieval and FEvaluation: Fourth

15

Workshop of the INitiative for the Evaluation of XML Retrieval (INEX
2005), volume 3493 of Lecture Notes in Computer Science, Schloss
Dagstuhl, Germany, November 28-30, 2005, 2006. Springer-Verlag, New
York City, NY, USA.

Norbert Fuhr, Mounia Lalmas, Saadia Malik, and Zoltan Szlavik, edi-
tors. Advances in XML Information Retrieval. Third Workshop of the
Initiative for the Evaluation of XML retrieval (INEX), volume 3493 of
Lecture Notes in Computer Science, Schloss Dagstuhl, Germany, De-
cember 6-8, 2004, 2005. Springer-Verlag, New York City, NY, USA.

Schlomo Geva. GPX - Gardens Point XML Information Retrieval at
INEX 2004. In Fuhr et al. [5], pages 211-223.

Gabriella Kazai and Mounia Lalmas. INEX 2005 Evaluation Mea-
sures. In Fuhr et al. [4], pages 16-29. http://inex.is.informatik.uni-
duisburg.de/2005 /inex-2005-metricsv4.pdf.

Charles T. Meadow, Bert R. Boyce, and Donald H. Kraft. Text Infor-
mation Retrieval Systems. Academic Press, New York City, NY, USA,
San Diego, second edition, 2000.

Richard A. O’Keefe and Andrew Trotman. The Simplest Query Lan-
guage That Could Possibly Work. In Norbert Fuhr, Mounia Lalmas,
and Saadia Malik, editors, Proceedings of the second Workshop of the
Initiative for the Evaluation of XML retrieval (INEX), December 15-
17, 2003, pages 167-174, Schloss Dagstuhl, Germany, 2004.

C.R. Perrault and B.J. Grosz. Natural Language Interfaces. Ezxploring
Articial Intelligence, pages 133—-172, 1988.

Alan F. Smeaton. Information Retrieval: Still Butting Heads with
Natural Language Processing? In M.T. Pazienza, editor, Information
Ezxtraction — A Multidisciplinary Approach to an Emerging Information
Technology, volume 1299 of Lecture Notes in Computer Science, pages
115-138. Springer-Verlag, New York City, NY, USA, 1997.

Karen Sparck Jones. What is the role of NLP in text retrieval? In
Tomek Strzalkowski, editor, Natural Language Information Retrieval,
pages 1-24. Kluwer Academic Publisher, Dordrecht, NL, 1999.

Xavier Tannier, Jean-Jacques Girardot, and Mihaela Mathieu.
Analysing Natural Language Queries at INEX 2004. In Fuhr et al.
[5], pages 395-409.

16

[14] Andrew Trotman and Borkur Sigurbjornsson. Narrowed Extended
XPath I (NEXI). In Fuhr et al. [5], pages 16-40.

[15] XML Path Language (XPath). World Wide Web Consortium (W3C)
Recommandation, 1999. http://www.w3.org/TR/1999/REC-xpath-
19991116.

[16] XQuery 1.0: An XML Query Language. World Wide Web Consor-
tium (W3C) Working Draft, 2005. http://www.w3.org/TR/2005/WD-
xquery-20050404/.

[17] Alan Woodley and Schomo Geva. NLPX at INEX 2005. In Fuhr et al.
[4].

17

