
Secure Management of Structured Documents

Marcus Hassler
University of Klagenfurt

marcus.hassler@uni-klu.ac.at

Franz Kollmann
University of Klagenfurt

franz.kollmann@uni-klu.ac.at

ABSTRACTA sophisti
ated do
ument management system is a funda-mental basis to
ope with the ri
hness of ele
troni
 informa-tion. EÆ
ient information retrieval and data se
urity arekey
on
epts whi
h have to be
onsidered early during thesystem design. Using stru
tured do
uments in this
ontexthas two main advantages: �rst it
an improve retrieval per-forman
e and se
ond it allows user tailored do
ument en-
ryption. In this paper we propose a general system ar
hi-te
ture for storing, sear
hing, retrieving and se
uring XMLstru
tured do
uments. The approa
h relies on a relationaldatabase storing the
ontent and stru
ture of do
uments.Natural language pro
essing te
hniques provide similarity-based mat
hing of user queries and do
ument elements atdi�erent stru
tural levels. In
ontrast to other approa
hes,whi
h support either en
ryption of full do
uments or no en-
ryption at all, our approa
h also
overs partial en
ryptionof do
uments.In order to allow element-based en
ryptionwithin hierar
hi
al organized do
uments, a method to de-rive keys from superior to inferior element nodes is proposed.Our model allows the owner of a do
ument to spe
ify whi
hparts of her do
ument have to be en
rypted. Besides sear
h-ing within unen
rypted parts of do
uments, users
an alsoretrieve whole do
uments. These do
uments are returnedas de�ned by the owner, thus they may
ontain en
ryptedparts. For a

essing the en
rypted do
ument
ontents, auser
an request the appropriate de
ryption keys from ali
ense server. To minimize se
urity risks the de
ryptionpro
ess itself takes pla
e at the
lient side only.
KeywordsDo
ument Management, Information Retrieval, Stru
turedDo
uments, Natural Language Pro
essing, XML Se
urity,Key Derivation
1. INTRODUCTION AND MOTIVATIONThe explosion of ele
troni
ally available data and the needof managing it leads to new approa
hes for eÆ
ient do
u-ment management systems. The tenden
y towards stru
-tured do
uments involves further
hallenges of designingsu
h systems. This raises the question of how large amountsof stru
tured data
an be represented, stored, managed,and retrieved automati
ally. Therefore traditional do
u-ment management systems have to be adapted to ful�ll these
IPSI-2005 Conference, November 10-13, 2005, Venice (Italy).

needs. An important issue whi
h is often disregarded is howto provide me
hanisms to se
ure these do
uments at dif-ferent stru
tural levels for di�erent users. For example anauthor
ould be interested in prote
ting only the sour
e
ode(e.g. appendix) of his paper from being read by the publi
.Thus an adequate key management and its integration indo
ument management systems are fundamental aspe
ts.Espe
ially in the
ontext of ele
troni
 do
uments the term'stru
tured' has to be de�ned more pre
isely. The stru
tureof a do
ument is tightly
oupled to the intensions of the au-thor in organizing the text. From the IR point of view thisstru
tural heterogeneity is hard to handle eÆ
iently. Hen
enot only
ontent
an be queried, also
ontextual restri
tionsin form of stru
tural
onstraints
an be expressed. To
opewith this diÆ
ulty we propose a mapping of do
uments ontoa
ommon do
ument s
hema. Within this generi
 do
u-ment stru
ture two di�erent kinds of information are distin-guished:� Content, whi
h might be further stru
tured into
hap-ters and se
tions, refers to what the do
ument is about.� Metadata, in
ontrast, refers to additional informationdes
ribing the
ontent without being part of it.In order to a
hieve a

urate retrieval results, both kindsof information have to be treated di�erently. Also
lear
on-
epts of sear
hable and retrievable units are essential for in-dexing and retrieval. Similarity based mat
hing of elementsat all stru
tural levels together with ranking the retrievedelements a

ording to their relevan
e are key elements ofsu
h systems.Besides IR issues a well designed do
ument managementsystem also has to take
are of se
urity
on
erns. In this
ontext digital rights management is a
entral topi
. Toover
ome the
omplexity of rights management systems ap-propriate languages are developed (e.g. XrML [7℄). Never-theless formalizing and assuring rights in pra
ti
e are
om-pletely di�erent things. The latter is by far the harder part.For example how
an a system assure that a spe
i�
 mp3 �le
an be played only three times by ea
h system user? Fur-thermore the de�ned rights have to be evaluated by a system
omponent whi
h then (however) allows or not
ertain rightson do
uments. Generally, if someone su

essfully atta
ks or
ir
umvents (e.g. the system administrator) su
h a
ompo-nent, the do
uments behind that rights enfor
ement logi

an be a

essed in an unrestri
ted manner. Be
ause ourwork aims at prote
ting parts of do
uments from readingby unauthorized people, we fo
us on �ne granular readingrights.

3

7

SMSD System 4

1

License Server

2
Database

5

Input

Document Owner

User
Search

&

Retrieval

6

8

Figure 1: Con
eptual modelWe propose a Se
ure Management of Stru
tured Do
u-ments (SMSD) system (see Figure 1) where XML do
uments
an be uploaded by do
ument owners and sear
hed/retrievedby users. The input pro
ess supports three main tasks: �rst,it gains as mu
h information as possible about the do
ument(metadata) in order to optimize the performan
e for sear
hand retrieval later on; se
ond, the input pro
ess helps theowner to de�ne and enfor
e reading rights (by en
ryption)on di�erent parts of the do
ument; last, it stores the do
-ument as spe
i�ed by the owner with its metadata in thedatabase. The sear
h and retrieval pro
ess a
ts as an in-terfa
e for users who sear
h within, browse and downloaddo
uments.Before the do
ument is submitted to the system, the ownerof the do
ument de�nes reading rights on do
ument parts(step 1). Ea
h node of the plain do
ument is analyzed anda
ontent representation for indexing and retrieval is
om-puted. The system then derives valid keys for all do
umentnodes whi
h the owner has sele
ted to be en
rypted. Af-terwards the submitted do
ument
ontents and representa-tions get en
rypted a

ording to the spe
i�ed rights. Nextall nodes of the do
ument (
ontents and representations) arestored either en
rypted or plain in a database (step 2). Anatta
k on the system does not bring more information than astandard user gets during a retrieval run. Finally the li
enseserver is noti�ed about the new do
ument by using a se
ure(en
rypted and authenti
ated) data transmission (step 3).This noti�
ation
onsists of the do
ument number, the fullstru
tural information and the set of en
rypted nodes.During a sear
h (step 4) only plain representations of do
-ument nodes are mat
hed against the query (step 5). Resultnodes are ranked a

ording to their relevan
e and listed tothe user (step 6). By sele
ting a node from the result listits
ontent is displayed. If the user sele
ts a whole do
u-ment to be retrieved, the system returns it as spe
i�ed bythe owner, en
rypted, partially en
rypted or not en
rypted(step 7). The whole en
ryption pro
ess (if needed) is per-formed only at the
lient side. Therefore, the
lient requeststhe spe
i�
 keys for en
ryption from the li
ense server (step8).In our
onsiderations we address the following aspe
ts:� Minimized key storage� Key generation as simple as possible� Easy implementation in pra
ti
e� Inheritan
e of a

ess (reading) rights

In the sequel we brie
y review some resear
hes related toour work. Then we
larify the
on
ept of stru
tured do
-uments from our point of view and after that we give anoverview about stru
tured do
ument retrieval. Se
tion 5pinpoints our approa
h for hierar
hi
al key derivation. Thena general ar
hite
ture for integrating se
urity issues in the
ontext of stru
tured do
uments is suggested. Finally the
on
lusion summarizes the main ideas of this paper.
2. RELATED WORKIn [3℄ an ar
hite
ture of a
ontent management server forXML do
uments stored in their native XML format is sug-gested. The system is trimmed for large data
olle
tionsunder high load. Indexing and retrieval is restri
ted on tex-tual data in
orporating word and phrase indi
es. Kunkel-mann and Brunelli [16℄ give requirements for a good
ontentmanagement system emphasizing the importan
e of meta-data. Besides textual
ontent also multimedia information(images, videos) are addressed. Another XML retrieval sys-tem developed by Fuhr is HyREX [9, 1℄. For query evalua-tion HyREX relies on the XIRCL language (extended XPathsyntax). Di�erent types of metadata support
omparison athigher levels (e.g. person names, lo
al
loseness). Howeverthese works do not
over se
urity issues at all.To solve the hierar
hi
al a

ess
ontrol problem the us-age of an en
ryption fun
tion as a one-way fun
tion (withtrapdoor) was �rst proposed in [2℄. Therein a method toderive keys for hierar
hi
al stru
tured se
urity
lasses is sug-gested. In parti
ular a publi
 integer ti is assigned to ea
hse
urity
lass Ui with the property that ti divides all valuesassigned to its inferior se
urity
lasses. The se
ret key Kifor se
urity
lass Ui is
al
ulated by Kti0 (mod m) where K0is the se
ret key of the
entral authority and m is the publi
RSA modulus. Be
ause ti MOD tj = 0 if Ui � Uj , ti growsdramati
ally with an in
reasing number of
lasses.In [5℄ a key derivation me
hanism for over
oming
exible
hanges of keys and tree nodes is proposed. This dynami
a

ess
ontrol is a
hieved by a
erti�
ation authority whi
hupdates all publi
 parameters in the system.In the
ontext of XML do
uments, some of these
exibili-ties (multiple parent nodes, dynami
al
hanging do
uments)are not needed. Be
ause XML is tree-like stru
tured ea
hnode (ex
ept the root node) has exa
tly one parent. Sin
ealtering the stru
ture of an XML do
ument may lead tokey in
onsisten
ies of former do
ument versions, we assumethat if a do
ument gets
hanged (
ontent and/or stru
ture)this leads to a new do
ument with a new do
ument identi-�er (versioning). Those simpli�
ations allow us to de�ne aneasy but e�e
tive deriving method (without the need of a
erti�
ation authority).
3. TAXONOMY FOR STRUCTURED

DOCUMENTSAs soon as speaking of stru
tured do
uments, the ques-tion of 'what is stru
tured' and 'how is the stru
ture ex-pressed' is raised. Di�erent authors tend to stru
ture theirtexts di�erently, so there is no
onsisten
y inherent in aset of do
uments written by di�erent authors. This stru
-tural heterogeneity often leads to in
onsisten
ies and ambi-guities, espe
ially in large-s
ale do
ument management sys-tems. Therefore we introdu
e a uniform do
ument s
hema,
onsisting of a small set of only three stru
tural entities. In2

a �rst step stru
tural ambiguities are eliminated by map-ping in
oming do
uments onto our s
hema. Afterwards op-timized data stru
tures, algorithms and storing me
hanismsimprove indexing and retrieval performan
e
onsiderably.
3.1 Element typingProper retrieval results always depend on a
ertain levelof
ontent interpretation and stru
tural knowledge. Thisinformation plays a
entral role in satisfying the users needsduring retrieval. Therefore some nodes, like the gray shadedelements in Figure 2 should be treated more like (meta)data(e.g. the author's name), whi
h might be queried based onBoolean mat
hing model. In
ontrast, other elements shouldbe handled as full text elements and mat
hed based on theirsimilarity to the query.

...

...

book

author

family-

name

sur-

name

text
 text

title

text

body

abstract

text

chapter
 chapter

title

text

section
 section

title

text

text

title

text

text
Figure 2: Example do
ument treeTo allow a semanti
 interpretation of the
ontent of an el-ement, a type hierar
hy is proposed by G�overt [10℄. An ex-tension of the proposed type hierar
hy is depi
ted in Figure3. There, types are derivated from a
ommon base element.The �rst level in the hierar
hy
orresponds to database sup-ported data types. Thus, they
an be used to assign types tothe
olumns of database tables for storing spe
i�
 element
ontents. Further types in subsequent levels in the hierar
hyare user-de�ned, having one of the basi
 database types asan
estor (e.g. PersonName is a String).
Base

Blob
Date
String
Number

Person

Name

Full text
 Location

English
 German

ISBN

Number

Phone

Number
Figure 3: Hierar
hi
al metadata typesIn addition to the data types, also predi
ates for
om-parison and methods for
omputation are de�ned. Thisallows di�erent treatment of e.g. se
tion titles and fulltext paragraphs. Whereas titles are probably not full sen-ten
es and thus should be treated like keywords, paragraphsmight be analyzed in more detail. Predi
ates also allowmore sophisti
ated similarity based mat
hing of elements ofthe same type. So do
uments written by \Albert Einstein"are addressed by a user query stating the author of type

PersonName as \A. Einstein", whereas \H. Einstein" doesnot.
3.2 Structured ContentThe hierar
hi
al stru
ture for the
ontent of do
uments isusually
overed by terms like
hapters, se
tions and subse
-tions (see Figure 2). To be able to systemati
ally deal withdi�erent do
ument sour
es and XML format spe
i�
ationseÆ
iently, we introdu
e a general do
ument format (de�nedby an XML s
hema) that
onsists of only three di�erentmain elements (levels): DOCUMENT, SECTION and FRAGMENT.The DOCUMENT element is the root node of all do
uments.The basi
 element to stru
ture a do
uments
ontent is theSECTION. Ea
h SECTION may
ontain an arbitrary number ofFRAGMENTs and/or other SECTIONs. By this re
ursive de�ni-tion, there is no limiting maximum depth for nested stru
-tures. To de�ne smallest retrievable units for indexing andretrieval, we use the notion of FRAGMENTs. So FRAGMENTs de-�ne the leaf nodes in our do
ument stru
ture (see Figure4). With this
on
ept we are able to re
e
t any tree-likestru
ture within do
uments.

Doc

Sec

Sec

Sec

Sec

Sec

Sec

Fra

Fra

Fra

Fra

Fra

Fra

Fra

Fra

Fra

1
 36

4
 5
 6
7

11

8

12
 13

14

16

15

17

18

19
 24
 20
 21

22
 23

26
 27
 28

29
 30

31

32
 33
 34
35

25
 Fra

Fra
2
 3

9
 10

Figure 4: Example do
umentAll three main elements
onsist of two blo
ks, a metadatablo
k and a
ontent blo
k. The metadata blo
k
ontains ad-ditional information des
ribing the element and its
ontent.Examples for do
ument metadata are author, year andkeywords, se
tion metadata would be the se
tions title.Fragment metadata is used to de�ne its a
tual
ontent bymeans of its
ontent type, language, and title (e.g. �g-ure, table, et
.).The
ontent blo
k
ontains the
ontent of the spe
i�ed el-ement. The
ontents of DOCUMENTs and SECTIONs are de�nedas a
olle
tion of further sub-SECTIONs and FRAGMENTs. The
ontent of FRAGMENTs
an be either byte
ode (inlined binaryinformation, e.g. �gures) or plain text.Hen
e a FRAGMENT
an be understood as basi
 buildingblo
k for any kind of
ontent. In this
ontext it a
ts as a
ontent
ontainer for paragraphs, �gures, tables, formulas,images, sounds, videos, et
.). The granularity of a FRAGMENTdepends on how deeply stru
tured a do
ument is. This de�-nition ranges from senten
e-level up to the whole
ontent ofa logi
al do
ument stru
ture (e.g
hapter, se
tion, subse
-tion, et
.).Often additional markup within a FRAGMENT's
ontent isneeded to support further layout information, mathemat-3

i
al environments, footnotes and linkage. To
ope withsu
h information, the
ontent of a fragment might be sub-stru
tured to in
lude this markup. But the smallest retriev-able unit (index node) remains the whole fragment.The
ontent blo
k of DOCUMENTs, SECTIONs, and FRAGMENTsis not mandatory. This allows us to in
lude
ontents byusing only its metadata information (e.g. if a
ontent is notanalyzable by the system). This
on
ept also allows us toin
orporate any distributed sour
e of
ontent.In order to support linkage within do
uments, two types oflinks are de�ned: internal and external links. Internal linksare links within the same do
ument (e.g. table of
ontents,
itations, referen
es to �gures, tables, et
.). External linksrefer to other do
uments (e.g. referen
es, URIs, �le paths,et
.).
4. STRUCTURED DOCUMENT RETRIEVALTraditionally,
ontent-based retrieval systems rely eitheron the boolean model or the ve
tor spa
e model (VSM) [4,21, 20℄ to represent the (
at)
ontent of do
uments as a bagof words. Extensions of these models have been proposed,e.g. the fuzzy Boolean model and knowledge-aware models.However, all of these indexing models do ignore the organi-zation of texts and the stru
ture of do
uments until re
entlywith the advent of \queriable" digital libraries. A pre
ur-sory work in the dire
tion of stru
tured do
ument retrievalwas �rst proposed in [25, 26℄, where only fragments of do
u-ments are returned to the user in response to his/her queryinstead of the whole do
uments. This is a
tually similar tosome extent to passage retrieval.Stru
tured do
ument retrieval aims at exploiting the do
-ument stru
ture to improve retrieval a

ura
y. One wayto stru
ture do
uments is to use XML markup, where thestru
ture is expli
itly de�ned by a DTD or XML s
hema.While this stru
ture provides do
uments with hierar
hi
allevels of granularity, and therefore more pre
ision
an bea
hieved by means of fo
ussed retrieval [14℄, it does, how-ever, put more requirements on the representation and re-trieval me
hanisms. With the new generation of retrievalsystems, the two aspe
ts, namely the stru
ture and the
on-tent, have to be taken into a

ount. To minimally a
hievethat in presen
e of a nested stru
ture like
hapter-se
tion-subse
tion-paragraph, traditional information retrieval rep-resentation and indexing te
hniques (e.g. provided by theVSM) have to be adapted to �t the
ontext of stru
ture-aware retrieval. To design su
h systems, three basi
 aspe
tsare of high importan
e:� Indexing: As a �rst step indexing units, so
alled in-dex nodes, have to be de�ned. During retrieval onlyindexed elements of a do
ument
an be retrieved. In-dex nodes
an be de�ned in two ways: a human marksthem expli
itly; or all units are
onsidered by the sys-tem by a
ommon strategy. In our approa
h we adoptedthe se
ond idea to a
hieve a maximal degree of
exi-bility.� Retrieval: During retrieval the user
an resti
t thesear
h to
ertain index nodes. In other words he de-�nes the levels of sear
hed units expressed throughtheir XPaths, e.g. /Do
, /Do
/Se
/Se
, //Fra (dy-nami
 granularity). By default all element levels are
onsidered to be sear
hed. Additionally he spe
i�es

the retrieval units, the elements whi
h are returned asa result (by default the same as the sear
hed units).Hen
e the sear
hed units impli
itely de�ne the numberof sear
hed elements, and the retrieval units de�ne thedesired retrieval granularity, the user himself is ableto de
ide the tradeo� between retrieval quality andretrieval performan
e.� Ranking and result presentation: Related to in-dexing, a strategy for ranking the retrieval results hasto be de�ned beforehand. On
e ranked, the retrievalresults are presented to the user in a way that re
e
tsalso the stru
tural level of the retrieved
omponent.
5. HIERARCHICAL KEY DERIVATIONBru
e S
hneier
lassi�ed key management as \the hardestpart of
ryptography" [23℄. Often a
areless key manage-ment is the main reason why en
rypted data get revealedunauthorizedly, although standardized
ryptographi
 me
h-anisms are used. Why atta
king an en
ryption fun
tion ifthe keys in a key storage
an be mu
h easier
ompromised?In a key management system se
uring few keys is generallymore feasible than prote
ting many keys. In parti
ular if thekeys are expe
ted to in
rease
onstantly or even exponen-tially, the key storage will ex
eed sooner or later the storage
apa
ity of ea
h se
urity token.In Se
tion 3 a generi
 XML do
ument stru
ture was pro-posed. Stru
turing do
uments improves not only retrievalresults. It also allows a rights management at di�erent levelsin the do
uments hierar
hy. The XML stru
ture also helpsto provide an easier rights administration, where rights (i.e.rights for reading) de�ned at as
endant nodes are inheritedby des
endants. With this stru
ture it is possible to se
ure(i.e. en
rypt) even parts of do
uments. For example someauthors wants their sour
e
ode (and main idea respe
tively)in their do
ument to be readable only by those who pay forit (Figure 5).

intro main

appendix

java

src

c++

src

encrypted

intro main

appendix

java

src

c++

src

encryptedFigure 5: Partial do
ument en
ryptionIn many do
ument management systems rights on do
u-ments get managed by the logi
 whi
h is implemented in thesystem. For example the logi
 on the web server shows onlythat information that a user is allowed to see. But whatif the system is ha
ked and the rights management logi
 isbypassed? Only
ryptographi
 me
hanisms
an guarantee areal solution to this problem. Certainly
ryptography is notable to solve all problems
on
erning do
ument rights man-agement. Nevertheless we want at least to break down the'all-or-nothing en
ryption' paradigm into partial en
ryptionwhere the authors de
ide for themselves whi
h parts of theirdo
ument have to be en
rypted. Surely, if every do
umentgets its own key and individual keys are assigned to nodes4

in the stru
ture of a do
ument, the e�ort to manage su
hkeys be
omes signi�
antly high.Therefore, we propose a method based on derived keys�tting the tree-like stru
ture of XML do
uments. This re-du
es the number of se
ret keys to a minimum: with ourapproa
h only one key (master key) has to be stored se-
retly. All other keys of all do
uments in the system
anbe derived from the master key when needed. Be
ause ourderivation fun
tion is based on a one-way fun
tion, it
anbe publi
.In the following we give a
on
eptual approa
h for a tree-based key derivation. After that we dis
uss a pra
ti
al im-plementation of the
on
epts and suggest me
hanisms toa
hieve a good tradeo� between se
urity and feasibility.
5.1 Conceptual designA key derivation fun
tion
al
ulates a key from a mas-ter se
ret and additional parameters. In the literature akey derivation fun
tion is often asso
iated with a fun
tionf(ms; s; n). f derives a key from a master se
ret ms andtwo parameters, a salt value s (pseudo-randomized number)and a number of iterations n. Instead of passwords (whi
h
an often be easily atta
ked by a di
tionary atta
k) pseudo-random numbers for ms are used, thus an extra salt valueis not needed. We denote a key derivation fun
tion f asf : f0; 1gr � f0; 1gs ! f0; 1gt (1)whi
h produ
es a key kj of bit length t from a given key kiof bit length r, and a publi

onstant
 of bit length s, givenby f(ki;
) = kj (2)Be
ause the XML do
ument stru
ture is hierar
hi
al, weneed a key derivation fun
tionality whi
h supports hierar-
hi
al dependen
ies. Keys
orresponding to a parent nodeshould be more \powerful" than keys belonging to its
hil-dren. That is why a one-way key derivation me
hanism,whi
h allows that keys belonging to
hildren nodes
an bederived from keys belonging to their parent but not vi
eversa, is required. The other way round, deriving a validkey for a parent from any key of its
hildren must be pra
-ti
ally impossible (right tree in Figure 6).

1 1 1

2 2

X X X

X XFigure 6: One-way key derivationKeys belonging to des
endant nodes whi
h are more thanone level below a given node in the tree are
al
ulated re-
ursively. For example keys assigned to grand
hildren nodesare
al
ulated �rst by deriving keys asso
iated to the
hil-dren nodes whi
h are parent nodes of the grand
hild nodesand afterwards by deriving keys from the
hildren nodes tothose of grand
hildren nodes (left tree in Figure 6).In our proposal every XML do
ument gets its unique do
-ument identi�er do
 id and every node in the tree stru
ture

of an XML do
ument gets its own node identi�er n id (allpubli
). The do
ument key dk of a do
ument
an be derivedfrom a master key mk whi
h is se
ret. An en
ryption of ado
ument at the root node means that the whole do
umentis en
rypted with dk. Only those who obtain the do
umentkey (i.e. by buying it from a li
ense issuer)
an de
rypt thedo
ument. From dk all other keys (belonging to any node)in that do
ument
an be dedu
ed (left tree in Figure 7).Having a key asso
iated with an inner node instead, only aderivation of keys to des
endant nodes of that node is pos-sible. For example in the right tree of Figure 7 only k3
anbe derived from k1.
dk dk

k1 k2

k3

k1

k3

k2Figure 7: Derived keys in a tree stru
tureAn en
ryption on tree nodes allows us to prevent whole
ontents of subtrees from unauthorized a

ess. So stru
-tured do
uments like XML
an be en
rypted at di�erentnodes in the hierar
hy, thus allowing a
exible and �ne gran-ular level of en
ryption. If, for instan
e, an author of a do
-ument only wants the introdu
tion to be read by the publi
,he sele
ts all other nodes, lo
ated at the same level in thetree as the introdu
tion node, to be en
rypted (right tree inFigure 5). Then the do
ument management system derivesthe appropriate keys as des
ribed below and en
rypts thesele
ted nodes in the do
ument before storing it. In orderto have a minimal key storage the produ
ed keys do not haveto be stored by the do
ument management system, insteadthey
an be dis
arded. Later on, if a de
ryption is required,the keys
an be easily re
al
ulated by using the master keywhi
h is a randomized bit sequen
e that only the do
umentmanagement system knows. We assume that there exist ap-propriate me
hanisms to keep the master key se
ret (i.e. intamper-resistant hardware).The required property of a one-way key derivation
an bea
hieved by using a
ryptographi
 hash fun
tion. Generallya
ryptographi
 hash fun
tion H maps from any arbitrarybit sequen
e to a �xed size bit sequen
e l:H : f0; 1g� ! f0; 1gl (3)This means that a hash fun
tion maps an in�nite set toa �nite set and thus it is obvious that su
h a fun
tion
annot be bije
tive. So there exist di�erent inputs where thehash fun
tion produ
es identi
al outputs whi
h is
alled a
ollision.A hash fun
tion with two inputs, a key and an arbi-trary bit sequen
e, is
alled a Message Authenti
ation Code(MAC). To generate a do
ument key dk, a MAC fun
tionM is used by taking the master key mk and the uniquedo
ument identi�er as its input:dk =M(mk; do
 id) (4)5

Due to the nature of hash fun
tions stri
t uniqueness ofgenerated keys
annot be guaranteed by su
h a fun
tion.However, we
an enlarge the range of the hash fun
tion (i.eby using a hash fun
tion whi
h produ
es longer hash values)to redu
e the probability of a
ollision signi�
antly. More-over, to avoid atta
ks on the master key it is advantageousto use a further hash fun
tion within M (see se
tion 5.2).The do
ument key whi
h is asso
iated with a do
ument
an be
al
ulated on demand and if ne
essary all other keysin the do
ument
an be derived from dk in a similar way.Ea
h key kj at node level j 6= 0 (ex
ept the root key) withnode identi�er nj id
an be produ
ed by the key ki, whi
his asso
iated with its parent node i (see Figure 8), using aMAC fun
tion where k0 = dk:kj = M(ki; nj id) (5)
5.2 Practical design considerationsCommon hash fun
tions like SHA1 [13℄, MD5 [19℄ or RIPE-MD-160 [6℄ are iterative algorithms. In general, they ex-pand the input m (by padding) su
h that they
an dividem into a sequen
e of n blo
ks m1; : : : ;mn, where ea
h blo
kmi 2 f0; 1gl has a �xed length l. In ea
h hash iterationonly one input blo
k is being pro
essed. The hash valueprodu
ed in the i-th iteration only depends on the i-th in-put blo
k and the hash value from the previous iteration:hi = H(hi�1; mi). The starting hash value h0 used in the�rst round is de�ned by some
onstants.Designing a do
ument key derivation fun
tion as H(k jjdo
 id) is not a very good
hoi
e sin
e due to the itera-tion fun
tionality this allows a length extension atta
k [8℄.Consider having a do
ument key dk to a spe
i�
 do
ument.In some
ir
umstan
es (if the input extended by the al-gorithm ful�lls exa
tly the last blo
k without padding) itis then possible to produ
e further do
ument keys withoutknowing k by simply extending the do
ument identi�er (theold do
ument identi�er is a pre�x of the new one). Thisis possible be
ause of the iterative design of a hash fun
-tion. By a given do
ument key dk = hn (the output ofthe last hash iteration), an atta
ker
an easily
al
ulateH(hn jj do
 id extension) whi
h returns a new valid do
u-ment key. If there is no padding, this would be equal toH(k jj do
 id jj do
 id extension). Even in the other
ase,
al
ulating other valid do
ument keys is possible be
ause anatta
ker
an perform the padding manually by extending thedo
ument identi�er properly. To a
hieve this, the last blo
khas to be ful�lled (by padding) and afterwards any do
u-ment identi�er extension
an be appended. This produ
esa valid do
ument key with do
 id0 = do
 id jj padding jjdo
 id extension.Repla
ing the arguments and designing the key derivationfun
tion as H(do
 id jj k) is a better approa
h. Neverthe-less a key re
overy atta
k
ould be for
ed on that design(although the e�ort for a realisti
 key re
overing
an beillusive). Pla
ing a hash fun
tion within a hash fun
tion
an bring extra se
urity, whereas the order of argumentshas no drasti
 e�e
ts on se
urity issues. Composing a keyderivation fun
tion as H(H(K jjm)) leads to the design ofHMAC [15℄ whi
h is a MAC fun
tion that uses a nested hashfun
tion and two
onstants a and b:HMAC(m;k) = H(k � a jjH(k � b jjm)) (6)

Be
ause the design of HMAC has been approved over sev-eral years, the few extra
osts in performan
e
ould be worth
onsidering a key derivation fun
tion a

ording to that de-sign.For se
urity reasons it
an be an advantage to use dif-ferent hash fun
tions. As an example, the SSL handshakeproto
ol makes use of SHA in the MD5 fun
tion to generatea session key. Su
h a design redu
es the risk in
ase whenone hash fun
tion will be weakened seriously or even bro-ken in the future. A
tually there exist some atta
ks whi
h
an weaken, even though marginal, MD5, RIPEMD-160 andre
ently also SHA1 [24℄. Although RIPEMD-160 is not asfast as SHA or MD5, in our opinion it has an elaboratedone-way design whi
h seems to be appropriate for our keyderivation fun
tion. For the do
ument key derivation fun
-tion we suggest to use an extended version of RIPEMD-160namely RIPEMD-256 (denoted as R), whi
h produ
es 256bit hash values and within R we propose to use SHA-256(referred as S):dk = R(mk � a jjS(mk � b jj do
 id)) (7)The input of this fun
tion
onsists of the master key (e.g.256 bit), the two HMAC
onstants and the unique do
umentidenti�er. From the do
ument key (dk = ki) ea
h key kjbelonging to
hild node j of the root node
an be
al
ulatedby following derivation fun
tion:kj = R(ki � a jjS(ki � b jjnj id)) (8)
ki

kj

node i

node jFigure 8: Derived keys on nodesApplied re
ursively this fun
tion generates all keys in thesubtree with its root node i.Be
ause all stru
tural elements (do
ument identi�ers andnode identi�ers),
onstants (a and b) and this derivation al-gorithm are publi
ly known by the system users, someonehaving a key to a node
an derive all further keys in the sub-tree rooted at that node. For the en
ryption and de
ryptionon nodes we propose to use the Advan
ed En
ryption Stan-dard (AES) [18℄. The suggested derivation fun
tion pro-du
es keys with 256 bit length whi
h are supported by theAES.
5.3 Further remarksTo derive keys it is not ne
essary to take a MAC fun
tion.Also an en
ryption fun
tion (symmetri
 or asymmetri
)
anbe used to a
hieve similar properties. This
an sometimes bean advantage and sometimes it is a drawba
k. We designedour key derivation fun
tion su
h that it generates pseudo-random keys, not more. We do not need spe
ial fun
tional-ity like a \se
ret" way ba
k (trapdoor in RSA) from a keybelonging to a
hild node to the key belonging to its parentnode. In our design this should be simply not possible. Al-ternatively a symmetri
 en
ryption
ould be used as a keyderivation fun
tion (i.e. E(ki; nj id) = kj). Nevertheless6

a hash algorithm guarantees that the output has always a�xed bit length (here 256 bit). In a symmetri
 en
ryptions
heme the output size depends on the input size.Instead of using a re
ursive derivation fun
tion, one
andesign a key derivation fun
tion su
h that a key belongingto any node in the tree is derived form the do
ument keydire
tly. An often required feature in
ontext of a
exiblerights management is inheritan
e of rights. The above men-tioned approa
h does not support inheritan
e of rights.
6. SYSTEM ARCHITECTUREThis
hapter des
ribes the realization of our Se
ure Man-agement of Stru
tured Do
uments (SMSD) approa
h. This
overs the pro
essing of new do
uemnts (indexing), rightsmanagement (en
ryption and li
ense server noti�
ation), stor-age, sear
h and retrieval.
6.1 Indexing of documentsThe indexing pro
ess of a do
ument starts with an event-driven parsing (e.g. a SAX parser [22℄), where elementsand their
ontents are identi�ed and stored in
orrespondingdatabase tables. Afterwards the representations of naturallanguage text elements are
al
ulated. This is performed bya natural language analysis, transforming the raw texts toterm frequen
y ve
tors.Indexing of element nodes starts at the leaf nodes, repre-senting and storing the
ontent in the database. Every newrepresentation stored in the database updates global termstatisti
s used for term weighting during retrieval a

ord-ingly. The same operations are
arried out if do
uments arere-indexed or removed from the system.Inner node representations are
al
ulated by simply merg-ing the sets of feature terms and summing up their termfrequen
ies. Depending on whether an a
tual inner node isde�ned to be
al
ulated in advan
e, the representation is
al-
ulated and stored persistently. This redu
es sear
h timesduring retrieval, but in
reases the size of the database.Our natural language pro
essing (NLP) implementation isbased on abstra
t subtask
omponents. Taking advantagesof the the modularity aspe
t, di�erent implementations ofthe same
omponent are used and sele
ted during runtime.This design enables us to support various implementationsof tokenizers, taggers, stemmers, et
. in parallel, whi
h areinstantiated on demand. Our prototype also involves readymade-
omponents like the tagger, and the stemmer. Hen
eour system is
apable of multi-language NLP and parameter-based tailored representation
omputation.NLP involves several subtasks
ontaining tokenization,tagging, term extra
tion, stemming, �ltering and term fre-quen
y
al
ulation (see Figure 9).1. Tokenizer: identi�es words and senten
es. A text istransformed into a list of senten
es, where ea
h sen-ten
e
onsists of a list of tokens. To avoid any misin-terpretation of senten
e borders our tokenizer supportssingle- and multi-tokens, token typing, abbreviationdete
tion and spe
ial format lookup.2. Tagger: assigns grammati
al word
ategories (tags) towords. This pro
ess is based on di
tionary lookup,lexi
al rules and
ontextual patterns.3. Term extra
tor: only nouns and verbs are taken intoa

ount to represent the
ontent of a text. These are

re
ognized by using their tag information. Experi-ments showed that in
luding adje
tives and adverbsdoes not improve retrieval results.4. Stemmer: redu
es words to their roots (mainly byeliminating ending
hara
ters). This step supportssimilarity mat
hing of di�erent forms of the same word.Also the number of terms is redu
ed
onsiderable, en-abling faster
omparison
al
ulation.5. Filter: by means of a stop list
ontaining undesirablewords, only meaningful words among those remainingare retained. In the �rst version of our system the stoplist was
onstru
ted manually.6. Term frequen
y
al
ulation: simply
ounts how oftena stemmed term o

urs within a do
ument element.
Tokenizer
 Tagger
 Term extractor

Stemmer
Filter

natural

language text

Term frequency

calculation

term frequency

vector

NLP

Figure 9: NLP
omponentOne has to note that to this point the representations only
ontain term frequen
ies, not term weights. To a
hieve amaximum degree of dynami
 indexing, term weighting itselfis a

omplished during the retrieval phase only.
6.2 Rights managementDuring the input pro
ess the submitter of a do
umentde
ides whi
h parts of the do
ument have to be en
rypted(see Se
tion 5.1). In parti
ular the submitter sele
ts whi
hnodes in the XML stru
ture have to be en
rypted by thesystem. Therefore our approa
h realizes user de�ned read-ing rights on nodes in XML do
uments. Do
ument parts,whi
h are marked to be en
rypted, are stored en
rypted inthe database (as des
ribed in Se
tion 6.3). Before storing,ea
h do
ument node in the system gets a unique do
umentidenti�er. The keys used for the en
ryption are derived asdes
ribed in Se
tion 5. Inheritan
e of reading rights withinthe tree stru
ture is provided by the property of the re
ursivekey derivation fun
tion. To a
hieve maximal
exibility onthe
hoi
e of using the en
ryption methods and blo
k modes,we suggest to use XML En
ryption [17℄ on our mapped XMLdo
uments
onforming to our general XML do
ument for-mat. Besides, XML En
ryption supports variable en
odingformats (e.g. Base64, UTF16). For the en
ryption and de-
ryption we propose to use the Advan
ed En
ryption Stan-dard (AES) [18℄. The AES is relatively fast and as prevailingen
ryption standard it has gained spe
ial se
urity investiga-tions.Along with storing the do
uments in the database, thesystem generates a noti�
ation whi
h
ontains the do
umentidenti�er, the tree stru
ture of the do
ument and a list ofnodes whi
h are en
rypted. After mutual authenti
ation be-tween the system and the li
ense server, the noti�
ation isen
rypted and sent to the li
ense server. Later on, if users re-quest do
uments from the sear
h and retrieval
omponent ofthe system, desired do
uments are returned and transferred7

to them as spe
i�ed during the input pro
ess (en
rypted,partially en
rypted or not en
rypted).In order to a

ess en
rypted do
ument parts, appropriatekeys for de
ryption are ne
essary. There is no user admin-istration at all: users/
lients who have the appropriate keys
an de
rypt the en
rypted XML parts (if there are any).Others
an obtain them from the li
ense server by sending arequest
ontaining the do
ument and node identi�er. Afterrequesting, the li
ense server indi
ates whi
h requirementshas to be ful�lled (i.e. how many to pay) in order to ob-tain the desired keys. For an independent a

omplishment,the li
ense server also keeps the master key safe. With themaster key the li
ense server
an
al
ulate the proper keyto any node in any do
ument stored in the system.
6.3 StorageThe way do
uments are stored in IR-related systems playsa de
isive role on their performan
e and thus, on their a

ep-tan
e. Espe
ially in the
ontext of stru
tured do
uments ef-�
ien
y during retrieval of elements of any granularity mustbe provided. Therefore, we adopted a relational databaseapproa
h for storing the do
uments.We depart from the idea of pre- and post-order introdu
edin [11, 12℄. The goal is to a

elerate the a

ess to vari-ous stru
tural neighbors of ea
h element in the stru
ture ofa do
ument that are: des
endants, an
estors, and siblings.The a

ess eÆ
ien
y
omes from the fa
t that pre-order andpost-order des
riptors are unique for a given do
ument and,therefore,
an be used
onjointly with the ID of that do
u-ment as primary key in the mapped relational s
hema. Pre-and post-order support non-re
ursive an
estor/des
endantdete
tion and a

ess. Figure 4 shows how pre-order (num-ber to the left of an element) and post-order (number to theright of an element) are inserted.A stru
tural entry is des
ribed by the tuple (do
ID,pre-order,post-order,parentID,tagID,pathID,en
M ,en
C) (seeTable 1). The root element has pre-order = 1 and parentID =0 (no parent node) per de�nition. The tagID is in
luded forfast name lookup and a

ess. For the sake of performan
ewe added the elements full path (without positional infor-mation) pathID to
ir
umvent re
ursive path generationsby using the parentID relation.en
M and en
C are both boolean values whi
h indi
atewhether the set of metadata (en
M) and/or the
ontent(en
C) is/are stored en
rypted. In
ase of
ontent en
ryp-tion all available representations are also en
rypted. Hen
ethe en
ryption of nodes is based on inheritan
e, the sameen
M and en
C values are assigned to all des
endant nodes.Thus their metadata and
ontents are also en
rypted thesame way as before, but with another key derived from theparent node (see Se
tion 5).Inserting do
uments into the database is linear in timeand size of the input sour
e. By using an event-based pars-ing framework for XML do
uments like SAX [22℄, we areguaranteed to need only very limited temporary spa
e dur-ing storing [11℄.The
ontent of XML nodes is stored in separate tables.Hen
e not all stru
tural elements
onsist of
ontent them-selves,
ontent is not mandatory. As de�ned leaf nodes,FRAGMENTs are
onsisting of
ontent, so they have to be in-serted in the
ontent table (see Table 2). Other element
ontents of inner nodes (SECTIONSs and DOCUMENTs)
an be
al
ulated on the basis of the
ontained leaf nodes. Addi-

do
 pre post par tag path en
M en
Cd1 1 36 0 Do
 /D 0 0d1 2 3 1 Se
 /D/F 0 0d1 4 7 1 Se
 /D/S 0 0d1 5 6 4 Fra /D/S/F 0 0d1 8 25 1 Se
 /D/S 0 0d1 9 10 8 Fra /D/S/F 0 0d1 11 18 8 Fra /D/S/S 1 1d1 12 13 11 Fra /D/S/S/F 1 1d1 14 15 11 Fra /D/S/S/F 1 1. .d2 1 70 0 Do
 /Do
 1 0Table 1: Stru
tural entriestionally these dynami
ally generated
ontents
an also bestored in the
ontents table. This leads to redundan
y butin
reases performan
e during retrieval. Two independent
ontent tables are maintained: one for storing the plain
on-tent and another one for storing the
ontent representation.do
 pre
datad1 2 To begin with the number ...d1 5 The
ontent of do
ument ...d1 9 To improve performan
e ...d1 12 xxxxxxxxxxxxxxxxxxxxxxxTable 2: Content entries (plain
ontent)To improve performan
e user-de�ned metadata is treateddi�erently. Therefore, the database supports three levelsof metadata sets, ea
h for one of the three main elements(DOCUMENT, SECTION, and FRAGMENT). Instead of having sev-eral stru
tural entries with the same number of
ontent en-tries, a single row in a metadata table is used to store pooledmeta data.Hen
e all stru
tural elements (even DOCUMENTs) are uniquelyidenti�ed via do
ID and pre-order, three di�erent tables de-�ned by (do
ID,pre-order,meta1,meta2,. . . ,metan) hold allmetadata (see Table 3). The basi
 reason of having only oneSECTIONmetadata set is that all SECTION elements (
hapters,se
tions, subse
tions, et
.) are assumed to have a quite ho-mogenous set of meta elements (e.g. title). Although thismay lead to some 'NULL' values (unstated elements) in thedatabase, the a whole set of metadata
an be a

essed bya single database sele
t statement. This simpli�es databaselike querying of metadata and a

elerates a

ess.do
 pre id author title :::d1 1 K728 R. Smith In the summerd2 1 xxxxx xxxxx xxxxxxxxxxxxxxxxx. . . 1Table 3: Metadata entries (do
ument level)Ea
h element is uniquely identi�ed by its do
ument ID8

(do
ID) and element identi�er (pre-order). Asso
iated withthis pair are metadata sets (of all three main elements)and
ontent information (plain
ontent and representation).Both metadata and
ontent entries are optional. Additionalkinds of representations (e.g. semanti

on
epts, �gure rep-resentations, et
.)
an easily be integrated in this ar
hite
-ture.By using the do
ument identi�ers (resp. node identi�es)to derive keys on the
y, we do not need to store any keysexpli
itly. This redu
es key management e�orts signi�
antlybe
ause the system does not have to take
are of se
uringnew keys and lo
ating old ones.
6.4 Search and retrievalAs soon as a query is sent to the system, the query text isanalyzed the same way the do
ument elements were duringindexing, also resulting in a term frequen
y ve
tor for thequery (see Figure 9). Besides the text of the query severalother parameters may be de�ned:� The sear
h units de�ne whi
h element levels are to bemat
hed against the query. This parameter has a deepimpa
t on retrieval time, hen
e it de�nes the numberof elements that are to be weighted and
ompared tothe query.� The retrieval unit indi
ates whi
h elements of theresult set are to be returned to the user.� A maximum number of retrieval results parameter
an be used to trun
ate ranked retrieval results at a
ertain level. A similar e�e
t
an be a
hieved by stat-ing aminimum similarity parameter of the retrievedelements, thus eliminating results below a given simi-larity threshold.During retrieval only spe
i�ed (sear
h units) and not en-
rypted do
ument nodes are
ompared to the user query.In order to
al
ulate a similarity measure between an ele-ment and the query term frequen
y ve
tor the terms are�rst mapped onto a
ommon term spa
e,
onsisting of allterms known to the system. Then, both ve
tors (elementand query) are weighted a

ording to the standard ve
torspa
e model [21℄. Two weighted term ve
tors e and q aremat
hed using the
osine similarity, given by Equation 9.sim(e; q) = kPi=1(wi;e � wi;q)s kPi=1wi;e2 � kPi=1wi;q2 (9)Here, wi;q and wi;e re
e
t the weight of term i in the queryve
tor q, respe
tively in the element ve
tor e; k denotes thetotal number of terms. More similar weighted ve
tors willresult in a higher
osine similarity. For further details see [4℄.
6.5 Ranking and result presentationRanking is the task by whi
h similar units are retrievedordered by their relevan
e. The ranking pro
ess is impa
tedstrongly by the desired granularity (retrieval unit). For ex-ample, if the user spe
i�es the do
ument level (fo
us), thesystem should return only relevant do
uments. This
anbe done by measuring the similarity of the query to all el-ements of the do
ument. The similarity of that do
ument

to the query
an then be either the similarity of the do
u-ment's
ontent (root node) generated re
ursively from thedes
endants or the maximum similarity of the do
umentsunits.After all desired elements are mat
hed against the userquery, the similarity values are used for ranking. The rankedresults are trun
ated at the maximum number of retrievalresults. Furthermore remaining elements not meeting theminimum similarity
riteria are removed.We think of presenting the results to the user as a sortedlist of elements in de
reasing order of their rank, where asingle result node
an be sele
ted. Be
ause sear
hed nodesare not en
rypted their plain
ontent is dire
tly displayed tothe user. If a user downloads a whole do
ument, it is deliv-ered as spe
i�ed by the do
ument owner during submission.The keys for de
ryption
an be requested from the li
enseserver.
7. CONCLUSIONIn this paper we presented a new approa
h for partial en-
ryption of XML do
uments in the
ontext of stru
tureddo
ument retrieval. Do
ument owners have the possibil-ity to de�ne parts of do
uments (XML nodes) as to be en-
rypted separately.For stru
tural disambiguation and performan
e reason in-
oming do
uments are mapped onto a general do
uments
hema. This s
hema
onsists only of three main elements,namely DOCUMENTs, SECTIONs and FRAGMENTs. After sub-mission, do
uments
onforming to this s
hema are indexed.During this pro
edure all element nodes are analyzed andtheir representations are
al
ulated. A

ording to the owner'srights spe
i�
ation marked elements (metadata,
ontentsand representations) are en
rypted.For the en
ryption and de
ryption pro
ess approved me
h-anisms like the AES
an be used. In order to get the ap-propriate keys for en
ryption and de
ryption of do
umentparts, a two level hashing approa
h is applied: �rst a do
u-ment key is derivated from the master key and a do
umentidenti�er using some hash fun
tion. Se
ond we use the same
on
ept re
ursively to derive keys from a parent node to keysbelonging to its
hildren nodes. Starting with the do
umentkey, all keys for all nodes in that do
ument
an be
omputed.This approa
h redu
es key storage size to a minimum (mas-ter key), and allows inheritan
e of rights within subtrees.Afterwards the do
ument is stored in the database (en-
rypted, partially en
rypted or not en
rypted). In the nextstep the li
ense server, whi
h provides the keys for the
lientside de
ryption, is noti�ed about the new do
ument. Duringretrieval, do
ument nodes are mat
hed against a query anda relevan
e measure for ea
h node is
al
ulated. This alsoinvolves similarity based mat
hing of metadata a

ording totheir types. All results are listed to the user in de
reasingorder of their relevan
e. By sele
ting a result, the systemdisplays the
ontent of that do
ument node. Additionallya user
an download a whole do
ument. In this
ase it isre-generated from the database and sent to the user. Thus itmay also in
lude en
rypted parts as intended by the owner.In order to a

ess these parts a user
an request de
ryp-tion keys from the li
ense server. The de
ryption pro
ess isshifted
ompletely to the
lient side (user).Be
ause all do
uments in the system are stored en
ryptedas de�ned by the owner, bypassing the system logi
 andatta
king the storage dire
tly is useless. In addition to this9

key management is kept as simple as possible, and no kindof user management is needed. Furthermore the system isfreed of evaluating any rights at all.
8. REFERENCES[1℄ Mohammad Abolhassani, Norbert Fuhr, NorbertG�overt, and Kai Grossjohann, HyREX: Hypermediaretrieval engine for XML, Resear
h report, Universityof Dortmund, Department of Computer S
ien
e,Dortmund, Germany, 2002.[2℄ S. Akl and P. Taylor, Cryptographi
 Solutions to aProblem of A

ess Control in a Hierar
hy, ACMTransa
tions on Computer Systems, ACM, 1983,pp. 239{248.[3℄ T. Arnold-Moore, M. Fuller, A. Kent, R. Sa
ks-Davis,and Neil Sharman, Ar
hite
ture of a ContentManagement Server for XML Do
ument Appli
ations,1st International Conferen
e on Web InformationSystems Engineering (WISE00), IEEE, 2000.[4℄ Ri
ardo Baeza-Yates and Berthier Ribeiro-Neto,Modern information retrieval, Addison Wesley, ACMPress, New York, Essex, England, 1999.[5℄ T.S. Chen, Y.F. Chung, and C.S. Tian, A Novel KeyManagement S
heme for Dynami
 A

ess Control in aUser Hierar
hy, Pro
eedings of the 28th AnnualInternational Computer Software and Appli
ationsConferen
e (COMPSAC04), IEEE, 2004.[6℄ H. Dobbertin, A. Bosselaers, and B. Preneel, The hashfun
tion RIPEMD-160, www.esat.kuleuven.a
.be/~bosselae/ripemd160.html, 1996.[7℄ eXtensible rights Markup Language,http://www.xrml.org/, 2005.[8℄ N. Ferguson and B. S
hneier, Pra
ti
al
ryptography,Wiley Publishing, 2003.[9℄ Norbert Fuhr, Norbert G�overt, and Kai Grossjohann,HyREX: Hyper-media retrieval engine for XML,Pro
eedings of the 25th Annual InternationalConferen
e on Resear
h and Development inInformation Retrieval (New York) (Kalervo J�arvelin,Mi
heline Beaulieu, Ri
ardo Baeza-Yates, andSung Hyon Myaeng, eds.), ACM, 2002,Demonstration, p. 449.[10℄ Norbert G�overt, Bilingual information retrieval withHyREX and Internet translation servi
es,Cross-Language Information Retrieval and Evaluation(Heidelberg et al.) (Carol Peters, ed.), Le
ture Notesin Computer S
ien
e, vol. 2069, Springer, 2001,pp. 237{244.[11℄ Torsten Grust, A

elerating XPath lo
ation steps,Pro
eedings of the 2002 ACM SIGMOD international
onferen
e on Management of data, ACM Press, 2002,pp. 109{120.[12℄ Djoerd Hiemstra, A database approa
h to
ontent-based XML retrieval, INitiative for theEvaluation of XML Retrieval (INEX). Pro
eedings ofthe First INEX Workshop. Dagstuhl, Germany,De
ember 8{11, 2002 (Sophia Antipolis, Fran
e)(Norbert Fuhr, Norbert G�overt, Gabriella Kazai, andMounia Lalmas, eds.), ERCIM Workshop Pro
eedings,ERCIM, Mar
h 2003, pp. 111{118.[13℄ P. Jones, RFC 3174 - US Se
ure Hash Algorithm 1(SHA1), www.faqs.org/rf
s/rf
3174.html, 2001.

[14℄ G. Kazai, M. Lalmas, and T. R�olleke, Fo
ussedstru
tured do
ument retrieval, Pro
eedings of the 9Retrieval (SPIRE 2002), Springer, 2002, pp. 241{247.[15℄ H. Kraw
zyk, M. Bellare, and R. Canetti, RFC 2104 -HMAC: Keyed-Hashing for Message Authenti
ation,www.faqs.org/rf
s/rf
2104.html, 1997.[16℄ T. Kunkelmann and R. Brunelli, Advan
ed Indexingand Retrieval in Present-day Content ManagementSystems, Pro
eedings of the 28th Euromi
roConferen
e (EUROMICRO02), IEEE, 2002.[17℄ Joseph Reagle, W3C XML En
ryption WG,http://www.w3.org/En
ryption/2001/, 2001.[18℄ Vin
ent Rijmen, The blo
k
ipher Rijndael,http://
sr
.nist.gov/CryptoToolkit/aes/, 2004.[19℄ R. Rivest, RFC 1321 - The MD5Message-Digest-Algorithm,www.faqs.org/rf
s/rf
1321.html, 1992.[20℄ G. Salton, The smart retrieval system - experiments inautomati
 do
ument pro
essing, Prenti
e Hall In
.,Englewood Cli�s, NJ, 1971.[21℄ G. Salton and M. E. Lesk, Computer evaluation ofindexing and text pro
essing, Journal of the ACM 15(1968), no. 1, 8{36.[22℄ SAX (Simple API for XML),http://sax.sour
eforge.net, 2005.[23℄ B. S
hneier, Applied
ryptography, John Wiley andsons, 1996.[24℄ X. Wang, Y. L. Yin, and H. Yu, Collision Sear
hAtta
ks on SHA1,http://
ryptome.org/sha1-atta
ks.htm, 2005.[25℄ Ross Wilkinson, E�e
tive retrieval of stru
tureddo
uments, Pro
eedings of the 17th annualinternational ACM SIGIR
onferen
e on Resear
h anddevelopment in information retrieval, Springer-VerlagNew York, In
., 1994, pp. 311{317.[26℄ Ross Wilkinson and Justin Zobel, Comparison offragmentation s
hemes for do
ument retrieval,Overview of the Third Text REtrieval Conferen
e(TREC-3). NIST Spe
ial Publi
ation 500-225,National Institute of Standards and Te
hnology(Donna K. Harman, ed.), 1994, pp. 81{84.

10

