Secure Management of Structured Documents

Marcus Hassler
University of Klagenfurt

marcus.hassler@uni-klu.ac.at

ABSTRACT

A sophisticated document management system is a funda-
mental basis to cope with the richness of electronic informa-
tion. Efficient information retrieval and data security are
key concepts which have to be considered early during the
system design. Using structured documents in this context
has two main advantages: first it can improve retrieval per-
formance and second it allows user tailored document en-
cryption. In this paper we propose a general system archi-
tecture for storing, searching, retrieving and securing XML
structured documents. The approach relies on a relational
database storing the content and structure of documents.
Natural language processing techniques provide similarity-
based matching of user queries and document elements at
different structural levels. In contrast to other approaches,
which support either encryption of full documents or no en-
cryption at all, our approach also covers partial encryption
of documents.In order to allow element-based encryption
within hierarchical organized documents, a method to de-
rive keys from superior to inferior element nodes is proposed.
Our model allows the owner of a document to specify which
parts of her document have to be encrypted. Besides search-
ing within unencrypted parts of documents, users can also
retrieve whole documents. These documents are returned
as defined by the owner, thus they may contain encrypted
parts. For accessing the encrypted document contents, a
user can request the appropriate decryption keys from a
license server. To minimize security risks the decryption
process itself takes place at the client side only.

Keywords

Document Management, Information Retrieval, Structured
Documents, Natural Language Processing, XML Security,
Key Derivation

1. INTRODUCTION AND MOTIVATION

The explosion of electronically available data and the need
of managing it leads to new approaches for efficient docu-
ment management systems. The tendency towards struc-
tured documents involves further challenges of designing
such systems. This raises the question of how large amounts
of structured data can be represented, stored, managed,
and retrieved automatically. Therefore traditional docu-
ment management systems have to be adapted to fulfill these

IPSI-2005 Conference, November 10-13, 2005, Venice {ltaly

Franz Kollmann
University of Klagenfurt

franz.kollmann@uni-klu.ac.at

needs. An important issue which is often disregarded is how
to provide mechanisms to secure these documents at dif-
ferent structural levels for different users. For example an
author could be interested in protecting only the source code
(e.g. appendix) of his paper from being read by the public.
Thus an adequate key management and its integration in
document management systems are fundamental aspects.

Especially in the context of electronic documents the term
'structured’ has to be defined more precisely. The structure
of a document is tightly coupled to the intensions of the au-
thor in organizing the text. From the IR point of view this
structural heterogeneity is hard to handle efficiently. Hence
not only content can be queried, also contextual restrictions
in form of structural constraints can be expressed. To cope
with this difficulty we propose a mapping of documents onto
a common document schema. Within this generic docu-
ment structure two different kinds of information are distin-
guished:

e Content, which might be further structured into chap-
ters and sections, refers to what the document is about.

e Metadata, in contrast, refers to additional information
describing the content without being part of it.

In order to achieve accurate retrieval results, both kinds
of information have to be treated differently. Also clear con-
cepts of searchable and retrievable units are essential for in-
dexing and retrieval. Similarity based matching of elements
at all structural levels together with ranking the retrieved
elements according to their relevance are key elements of
such systems.

Besides IR issues a well designed document management
system also has to take care of security concerns. In this
context digital rights management is a central topic. To
overcome the complexity of rights management systems ap-
propriate languages are developed (e.g. XrML [7]). Never-
theless formalizing and assuring rights in practice are com-
pletely different things. The latter is by far the harder part.
For example how can a system assure that a specific mp3 file
can be played only three times by each system user? Fur-
thermore the defined rights have to be evaluated by a system
component which then (however) allows or not certain rights
on documents. Generally, if someone successfully attacks or
circumvents (e.g. the system administrator) such a compo-
nent, the documents behind that rights enforcement logic
can be accessed in an unrestricted manner. Because our
work aims at protecting parts of documents from reading
by unauthorized people, we focus on fine granular reading
rights.

SMSD System 4

Search

Ve Retrieval
8/6
‘\2 /3

Database

License Server

Document Owner

Figure 1: Conceptual model

We propose a Secure Management of Structured Docu-
ments (SMSD) system (see Figure 1) where XML documents
can be uploaded by document owners and searched /retrieved
by users. The input process supports three main tasks: first,
it gains as much information as possible about the document
(metadata) in order to optimize the performance for search
and retrieval later on; second, the input process helps the
owner to define and enforce reading rights (by encryption)
on different parts of the document; last, it stores the doc-
ument as specified by the owner with its metadata in the
database. The search and retrieval process acts as an in-
terface for users who search within, browse and download
documents.

Before the document is submitted to the system, the owner
of the document defines reading rights on document parts
(step 1). Each node of the plain document is analyzed and
a content representation for indexing and retrieval is com-
puted. The system then derives valid keys for all document
nodes which the owner has selected to be encrypted. Af-
terwards the submitted document contents and representa-
tions get encrypted according to the specified rights. Next
all nodes of the document (contents and representations) are
stored either encrypted or plain in a database (step 2). An
attack on the system does not bring more information than a
standard user gets during a retrieval run. Finally the license
server is notified about the new document by using a secure
(encrypted and authenticated) data transmission (step 3).
This notification consists of the document number, the full
structural information and the set of encrypted nodes.

During a search (step 4) only plain representations of doc-
ument nodes are matched against the query (step 5). Result
nodes are ranked according to their relevance and listed to
the user (step 6). By selecting a node from the result list
its content is displayed. If the user selects a whole docu-
ment to be retrieved, the system returns it as specified by
the owner, encrypted, partially encrypted or not encrypted
(step 7). The whole encryption process (if needed) is per-
formed only at the client side. Therefore, the client requests
the specific keys for encryption from the license server (step
8).

In our considerations we address the following aspects:

e Minimized key storage
e Key generation as simple as possible
e Easy implementation in practice

e Inheritance of access (reading) rights

In the sequel we briefly review some researches related to
our work. Then we clarify the concept of structured doc-
uments from our point of view and after that we give an
overview about structured document retrieval. Section 5
pinpoints our approach for hierarchical key derivation. Then
a general architecture for integrating security issues in the
context of structured documents is suggested. Finally the
conclusion summarizes the main ideas of this paper.

2. RELATED WORK

In [3] an architecture of a content management server for
XML documents stored in their native XML format is sug-
gested. The system is trimmed for large data collections
under high load. Indexing and retrieval is restricted on tex-
tual data incorporating word and phrase indices. Kunkel-
mann and Brunelli [16] give requirements for a good content
management system emphasizing the importance of meta-
data. Besides textual content also multimedia information
(images, videos) are addressed. Another XML retrieval sys-
tem developed by Fuhr is HyREX [9, 1]. For query evalua-
tion HyREX relies on the XIRCL language (extended XPath
syntax). Different types of metadata support comparison at
higher levels (e.g. person names, local closeness). However
these works do not cover security issues at all.

To solve the hierarchical access control problem the us-
age of an encryption function as a one-way function (with
trapdoor) was first proposed in [2]. Therein a method to
derive keys for hierarchical structured security classes is sug-
gested. In particular a public integer ¢; is assigned to each
security class U; with the property that ¢; divides all values
assigned to its inferior security classes. The secret key K;
for security class U; is calculated by K4 (mod m) where Ky
is the secret key of the central authority and m is the public
RSA modulus. Because t; MOD t; =0 if U; < Uj, t; grows
dramatically with an increasing number of classes.

In [5] a key derivation mechanism for overcoming flexible
changes of keys and tree nodes is proposed. This dynamic
access control is achieved by a certification authority which
updates all public parameters in the system.

In the context of XML documents, some of these flexibili-
ties (multiple parent nodes, dynamical changing documents)
are not needed. Because XML is tree-like structured each
node (except the root node) has exactly one parent. Since
altering the structure of an XML document may lead to
key inconsistencies of former document versions, we assume
that if a document gets changed (content and/or structure)
this leads to a new document with a new document identi-
fier (versioning). Those simplifications allow us to define an
easy but effective deriving method (without the need of a
certification authority).

3. TAXONOMY FOR STRUCTURED
DOCUMENTS

As soon as speaking of structured documents, the ques-
tion of ’'what is structured’ and ’'how is the structure ex-
pressed’ is raised. Different authors tend to structure their
texts differently, so there is no consistency inherent in a
set of documents written by different authors. This struc-
tural heterogeneity often leads to inconsistencies and ambi-
guities, especially in large-scale document management sys-
tems. Therefore we introduce a uniform document schema,
consisting of a small set of only three structural entities. In

a first step structural ambiguities are eliminated by map-
ping incoming documents onto our schema. Afterwards op-
timized data structures, algorithms and storing mechanisms
improve indexing and retrieval performance considerably.

3.1 Element typing

Proper retrieval results always depend on a certain level
of content interpretation and structural knowledge. This
information plays a central role in satisfying the users needs
during retrieval. Therefore some nodes, like the gray shaded
elements in Figure 2 should be treated more like (meta)data
(e.g. the author’s name), which might be queried based on
Boolean matching model. In contrast, other elements should
be handled as full text elements and matched based on their
similarity to the query.

(o) o |
GO a
‘title‘

|]

‘ section ‘

[[
G E®E®

‘ section ‘

Figure 2: Example document tree

To allow a semantic interpretation of the content of an el-
ement, a type hierarchy is proposed by Gévert [10]. An ex-
tension of the proposed type hierarchy is depicted in Figure
3. There, types are derivated from a common base element.
The first level in the hierarchy corresponds to database sup-
ported data types. Thus, they can be used to assign types to
the columns of database tables for storing specific element
contents. Further types in subsequent levels in the hierarchy
are user-defined, having one of the basic database types as
ancestor (e.g. PersonName is a String).

Base

St

ISBN
Number

Phone

Number Location

Person
Name

English

Figure 3: Hierarchical metadata types

‘ Full text

In addition to the data types, also predicates for com-
parison and methods for computation are defined. This
allows different treatment of e.g. section titles and full
text paragraphs. Whereas titles are probably not full sen-
tences and thus should be treated like keywords, paragraphs
might be analyzed in more detail. Predicates also allow
more sophisticated similarity based matching of elements of
the same type. So documents written by “Albert Einstein”
are addressed by a user query stating the author of type

PersonName as “A. Einstein”, whereas “H. Einstein” does
not.

3.2 Structured Content

The hierarchical structure for the content of documents is
usually covered by terms like chapters, sections and subsec-
tions (see Figure 2). To be able to systematically deal with
different document sources and XML format specifications
efficiently, we introduce a general document format (defined
by an XML schema) that consists of only three different
main elements (levels): DOCUMENT, SECTION and FRAGMENT.

The DOCUMENT element is the root node of all documents.
The basic element to structure a documents content is the
SECTION. Each SECTION may contain an arbitrary number of
FRAGMENTs and/or other SECTIONs. By this recursive defini-
tion, there is no limiting maximum depth for nested struc-
tures. To define smallest retrievable units for indexing and
retrieval, we use the notion of FRAGMENTs. So FRAGMENTSs de-
fine the leaf nodes in our document structure (see Figure
4). With this concept we are able to reflect any tree-like
structure within documents.

1 Doc 36 2 Fra 3
4 Sec 7 5 Fra 6

Figure 4: Example document

27 Fra 28
29 Fra 30

All three main elements consist of two blocks, a metadata
block and a content block. The metadata block contains ad-
ditional information describing the element and its content.
Examples for document metadata are author, year and
keywords, section metadata would be the sections title.
Fragment metadata is used to define its actual content by
means of its content_type, language, and title (e.g. fig-
ure, table, etc.).

The content block contains the content of the specified el-
ement. The contents of DOCUMENTs and SECTIONs are defined
as a collection of further sub-SECTIONs and FRAGMENTs. The
content of FRAGMENTs can be either bytecode (inlined binary
information, e.g. figures) or plain text.

Hence a FRAGMENT can be understood as basic building
block for any kind of content. In this context it acts as a
content container for paragraphs, figures, tables, formulas,
images, sounds, videos, etc.). The granularity of a FRAGMENT
depends on how deeply structured a document is. This defi-
nition ranges from sentence-level up to the whole content of
a logical document structure (e.g chapter, section, subsec-
tion, etc.).

Often additional markup within a FRAGMENT’s content is
needed to support further layout information, mathemat-

ical environments, footnotes and linkage. To cope with
such information, the content of a fragment might be sub-
structured to include this markup. But the smallest retriev-
able unit (index node) remains the whole fragment.

The content block of DOCUMENTs, SECTIONs, and FRAGMENTS
is not mandatory. This allows us to include contents by
using only its metadata information (e.g. if a content is not
analyzable by the system). This concept also allows us to
incorporate any distributed source of content.

In order to support linkage within documents, two types of
links are defined: internal and external links. Internal links
are links within the same document (e.g. table of contents,
citations, references to figures, tables, etc.). External links
refer to other documents (e.g. references, URISs, file paths,
etc.).

4. STRUCTUREDDOCUMENT RETRIEVAL

Traditionally, content-based retrieval systems rely either
on the boolean model or the vector space model (VSM) [4,
21, 20] to represent the (flat) content of documents as a bag
of words. Extensions of these models have been proposed,
e.g. the fuzzy Boolean model and knowledge-aware models.
However, all of these indexing models do ignore the organi-
zation of texts and the structure of documents until recently
with the advent of “queriable” digital libraries. A precur-
sory work in the direction of structured document retrieval
was first proposed in [25, 26], where only fragments of docu-
ments are returned to the user in response to his/her query
instead of the whole documents. This is actually similar to
some extent to passage retrieval.

Structured document retrieval aims at exploiting the doc-
ument structure to improve retrieval accuracy. One way
to structure documents is to use XML markup, where the
structure is explicitly defined by a DTD or XML schema.
While this structure provides documents with hierarchical
levels of granularity, and therefore more precision can be
achieved by means of focussed retrieval [14], it does, how-
ever, put more requirements on the representation and re-
trieval mechanisms. With the new generation of retrieval
systems, the two aspects, namely the structure and the con-
tent, have to be taken into account. To minimally achieve
that in presence of a nested structure like chapter-section-
subsection-paragraph, traditional information retrieval rep-
resentation and indexing techniques (e.g. provided by the
VSM) have to be adapted to fit the context of structure-
aware retrieval. To design such systems, three basic aspects
are of high importance:

e Indexing: As a first step indexing units, so called in-
dex nodes, have to be defined. During retrieval only
indexed elements of a document can be retrieved. In-
dex nodes can be defined in two ways: a human marks
them explicitly; or all units are considered by the sys-
tem by a common strategy. In our approach we adopted
the second idea to achieve a maximal degree of flexi-
bility.

e Retrieval: During retrieval the user can restict the
search to certain index nodes. In other words he de-
fines the levels of searched units expressed through
their XPaths, e.g. /Doc, /Doc/Sec/Sec, //Fra (dy-
namic granularity). By default all element levels are
considered to be searched. Additionally he specifies

the retrieval units, the elements which are returned as
a result (by default the same as the searched units).
Hence the searched units implicitely define the number
of searched elements, and the retrieval units define the
desired retrieval granularity, the user himself is able
to decide the tradeoff between retrieval quality and
retrieval performance.

e Ranking and result presentation: Related to in-
dexing, a strategy for ranking the retrieval results has
to be defined beforehand. Once ranked, the retrieval
results are presented to the user in a way that reflects
also the structural level of the retrieved component.

5. HIERARCHICAL KEY DERIVATION

Bruce Schneier classified key management as “the hardest
part of cryptography” [23]. Often a careless key manage-
ment is the main reason why encrypted data get revealed
unauthorizedly, although standardized cryptographic mech-
anisms are used. Why attacking an encryption function if
the keys in a key storage can be much easier compromised?
In a key management system securing few keys is generally
more feasible than protecting many keys. In particular if the
keys are expected to increase constantly or even exponen-
tially, the key storage will exceed sooner or later the storage
capacity of each security token.

In Section 3 a generic XML document structure was pro-
posed. Structuring documents improves not only retrieval
results. It also allows a rights management at different levels
in the documents hierarchy. The XML structure also helps
to provide an easier rights administration, where rights (i.e.
rights for reading) defined at ascendant nodes are inherited
by descendants. With this structure it is possible to secure
(i.e. encrypt) even parts of documents. For example some
authors wants their source code (and main idea respectively)
in their document to be readable only by those who pay for
it (Figure 5).

intro main intro | main

java o+ | | java cH+

\src src S N sfe src
encrypted encrypted

Figure 5: Partial document encryption

In many document management systems rights on docu-
ments get managed by the logic which is implemented in the
system. For example the logic on the web server shows only
that information that a user is allowed to see. But what
if the system is hacked and the rights management logic is
bypassed? Only cryptographic mechanisms can guarantee a
real solution to this problem. Certainly cryptography is not
able to solve all problems concerning document rights man-
agement. Nevertheless we want at least to break down the
"all-or-nothing encryption’ paradigm into partial encryption
where the authors decide for themselves which parts of their
document have to be encrypted. Surely, if every document
gets its own key and individual keys are assigned to nodes

in the structure of a document, the effort to manage such
keys becomes significantly high.

Therefore, we propose a method based on derived keys
fitting the tree-like structure of XML documents. This re-
duces the number of secret keys to a minimum: with our
approach only one key (master key) has to be stored se-
cretly. All other keys of all documents in the system can
be derived from the master key when needed. Because our
derivation function is based on a one-way function, it can
be public.

In the following we give a conceptual approach for a tree-
based key derivation. After that we discuss a practical im-
plementation of the concepts and suggest mechanisms to
achieve a good tradeoff between security and feasibility.

5.1 Conceptual design

A key derivation function calculates a key from a mas-
ter secret and additional parameters. In the literature a
key derivation function is often associated with a function
f(ms,s,n). f derives a key from a master secret ms and
two parameters, a salt value s (pseudo-randomized number)
and a number of iterations n. Instead of passwords (which
can often be easily attacked by a dictionary attack) pseudo-
random numbers for ms are used, thus an extra salt value
is not needed. We denote a key derivation function f as

f:4{0,1}" x {0,1}* — {0,1}' (1)

which produces a key k; of bit length ¢ from a given key k;
of bit length r, and a public constant c of bit length s, given
by
fki c) = k; ()
Because the XML document structure is hierarchical, we
need a key derivation functionality which supports hierar-
chical dependencies. Keys corresponding to a parent node
should be more “powerful” than keys belonging to its chil-
dren. That is why a one-way key derivation mechanism,
which allows that keys belonging to children nodes can be
derived from keys belonging to their parent but not vice
versa, is required. The other way round, deriving a valid
key for a parent from any key of its children must be prac-
tically impossible (right tree in Figure 6).

Figure 6: One-way key derivation

Keys belonging to descendant nodes which are more than
one level below a given node in the tree are calculated re-
cursively. For example keys assigned to grandchildren nodes
are calculated first by deriving keys associated to the chil-
dren nodes which are parent nodes of the grandchild nodes
and afterwards by deriving keys from the children nodes to
those of grandchildren nodes (left tree in Figure 6).

In our proposal every XML document gets its unique doc-
ument identifier doc_id and every node in the tree structure

of an XML document gets its own node identifier n_id (all
public). The document key dk of a document can be derived
from a master key mk which is secret. An encryption of a
document at the root node means that the whole document
is encrypted with dk. Only those who obtain the document
key (i.e. by buying it from a license issuer) can decrypt the
document. From dk all other keys (belonging to any node)
in that document can be deduced (left tree in Figure 7).
Having a key associated with an inner node instead, only a
derivation of keys to descendant nodes of that node is pos-
sible. For example in the right tree of Figure 7 only k3 can
be derived from k.

dk dk

ki

v

ks

Figure 7: Derived keys in a tree structure

An encryption on tree nodes allows us to prevent whole
contents of subtrees from unauthorized access. So struc-
tured documents like XML can be encrypted at different
nodes in the hierarchy, thus allowing a flexible and fine gran-
ular level of encryption. If, for instance, an author of a doc-
ument only wants the introduction to be read by the public,
he selects all other nodes, located at the same level in the
tree as the introduction node, to be encrypted (right tree in
Figure 5). Then the document management system derives
the appropriate keys as described below and encrypts the
selected nodes in the document before storing it. In order
to have a minimal key storage the produced keys do not have
to be stored by the document management system, instead
they can be discarded. Later on, if a decryption is required,
the keys can be easily recalculated by using the master key
which is a randomized bit sequence that only the document
management system knows. We assume that there exist ap-
propriate mechanisms to keep the master key secret (i.e. in
tamper-resistant hardware).

The required property of a one-way key derivation can be
achieved by using a cryptographic hash function. Generally
a cryptographic hash function H maps from any arbitrary
bit sequence to a fixed size bit sequence I:

H:{0,1}" - {0,1}' (3)

This means that a hash function maps an infinite set to
a finite set and thus it is obvious that such a function can
not be bijective. So there exist different inputs where the
hash function produces identical outputs which is called a
collision.

A hash function with two inputs, a key and an arbi-
trary bit sequence, is called a Message Authentication Code
(MAC). To generate a document key dk, a MAC function
M is used by taking the master key mk and the unique
document identifier as its input:

dk = M (mk, doc_id) (4)

Due to the nature of hash functions strict uniqueness of
generated keys cannot be guaranteed by such a function.
However, we can enlarge the range of the hash function (i.e
by using a hash function which produces longer hash values)
to reduce the probability of a collision significantly. More-
over, to avoid attacks on the master key it is advantageous
to use a further hash function within M (see section 5.2).

The document key which is associated with a document
can be calculated on demand and if necessary all other keys
in the document can be derived from dk in a similar way.
Each key k; at node level j # 0 (except the root key) with
node identifier n; _id can be produced by the key k;, which
is associated with its parent node ¢ (see Figure 8), using a
MAC function where kg = dk:

]C]‘ = M(ki,nj_id) (5)

5.2 Practical design considerations

Common hash functions like SHA1 [13], MD5 [19] or RIPE-
MD-160 [6] are iterative algorithms. In general, they ex-
pand the input m (by padding) such that they can divide
m into a sequence of n blocks my1, ..., m,, where each block
m; € {0,1}' has a fixed length I. In each hash iteration
only one input block is being processed. The hash value
produced in the ¢-th iteration only depends on the i-th in-
put block and the hash value from the previous iteration:
h; = H(hi—1,m;). The starting hash value ho used in the
first round is defined by some constants.

Designing a document key derivation function as H (k||
doc_id) is not a very good choice since due to the itera-
tion functionality this allows a length extension attack [8].
Consider having a document key dk to a specific document.
In some circumstances (if the input extended by the al-
gorithm fulfills exactly the last block without padding) it
is then possible to produce further document keys without
knowing k by simply extending the document identifier (the
old document identifier is a prefix of the new one). This
is possible because of the iterative design of a hash func-
tion. By a given document key dk = h, (the output of
the last hash iteration), an attacker can easily calculate
H(hy, || doc_id_extension) which returns a new valid docu-
ment key. If there is no padding, this would be equal to
H(k || doc-id || doc-id_extension). Even in the other case,
calculating other valid document keys is possible because an
attacker can perform the padding manually by extending the
document identifier properly. To achieve this, the last block
has to be fulfilled (by padding) and afterwards any docu-
ment identifier extension can be appended. This produces
a valid document key with doc_id’ = doc_id || padding ||
doc_id_extension.

Replacing the arguments and designing the key derivation
function as H(doc-id|| k) is a better approach. Neverthe-
less a key recovery attack could be forced on that design
(although the effort for a realistic key recovering can be
illusive). Placing a hash function within a hash function
can bring extra security, whereas the order of arguments
has no drastic effects on security issues. Composing a key
derivation function as H(H (K || m)) leads to the design of
HMAC [15] which is a MAC function that uses a nested hash
function and two constants a and b:

HMAC(m,k) = H(k @ a||H(k & b||m)) (6)

Because the design of HMAC has been approved over sev-
eral years, the few extra costs in performance could be worth
considering a key derivation function according to that de-
sign.

For security reasons it can be an advantage to use dif-
ferent hash functions. As an example, the SSL handshake
protocol makes use of SHA in the MD5 function to generate
a session key. Such a design reduces the risk in case when
one hash function will be weakened seriously or even bro-
ken in the future. Actually there exist some attacks which
can weaken, even though marginal, MD5, RIPEMD-160 and
recently also SHA1 [24]. Although RIPEMD-160 is not as
fast as SHA or MD5, in our opinion it has an elaborated
one-way design which seems to be appropriate for our key
derivation function. For the document key derivation func-
tion we suggest to use an extended version of RIPEMD-160
namely RIPEMD-256 (denoted as R), which produces 256
bit hash values and within R we propose to use SHA-256
(referred as S):

dk = R(mk @ a|| S(mk ® b|| doc_id)) (7)

The input of this function consists of the master key (e.g.
256 bit), the two HMAC constants and the unique document
identifier. From the document key (dk = k;) each key k;
belonging to child node j of the root node can be calculated
by following derivation function:

ki = R(ki © al| S(ki & b||n;-id)) (8)

ki/, node i

node j

Figure 8: Derived keys on nodes

Applied recursively this function generates all keys in the
subtree with its root node .

Because all structural elements (document identifiers and
node identifiers), constants (a and b) and this derivation al-
gorithm are publicly known by the system users, someone
having a key to a node can derive all further keys in the sub-
tree rooted at that node. For the encryption and decryption
on nodes we propose to use the Advanced Encryption Stan-
dard (AES) [18]. The suggested derivation function pro-
duces keys with 256 bit length which are supported by the
AES.

5.3 Further remarks

To derive keys it is not necessary to take a MAC function.
Also an encryption function (symmetric or asymmetric) can
be used to achieve similar properties. This can sometimes be
an advantage and sometimes it is a drawback. We designed
our key derivation function such that it generates pseudo-
random keys, not more. We do not need special functional-
ity like a “secret” way back (trapdoor in RSA) from a key
belonging to a child node to the key belonging to its parent
node. In our design this should be simply not possible. Al-
ternatively a symmetric encryption could be used as a key
derivation function (i.e. E(k;,nj_id) = k;j). Nevertheless

a hash algorithm guarantees that the output has always a
fixed bit length (here 256 bit). In a symmetric encryption
scheme the output size depends on the input size.

Instead of using a recursive derivation function, one can
design a key derivation function such that a key belonging
to any node in the tree is derived form the document key
directly. An often required feature in context of a flexible
rights management is inheritance of rights. The above men-
tioned approach does not support inheritance of rights.

6. SYSTEM ARCHITECTURE

This chapter describes the realization of our Secure Man-
agement of Structured Documents (SMSD) approach. This
covers the processing of new docuemnts (indexing), rights
management (encryption and license server notification), stor-
age, search and retrieval.

6.1 Indexing of documents

The indexing process of a document starts with an event-
driven parsing (e.g. a SAX parser [22]), where elements
and their contents are identified and stored in corresponding
database tables. Afterwards the representations of natural
language text elements are calculated. This is performed by
a natural language analysis, transforming the raw texts to
term frequency vectors.

Indexing of element nodes starts at the leaf nodes, repre-
senting and storing the content in the database. Every new
representation stored in the database updates global term
statistics used for term weighting during retrieval accord-
ingly. The same operations are carried out if documents are
re-indexed or removed from the system.

Inner node representations are calculated by simply merg-
ing the sets of feature terms and summing up their term
frequencies. Depending on whether an actual inner node is
defined to be calculated in advance, the representation is cal-
culated and stored persistently. This reduces search times
during retrieval, but increases the size of the database.

Our natural language processing (NLP) implementation is
based on abstract subtask components. Taking advantages
of the the modularity aspect, different implementations of
the same component are used and selected during runtime.
This design enables us to support various implementations
of tokenizers, taggers, stemmers, etc. in parallel, which are
instantiated on demand. Our prototype also involves ready
made-components like the tagger, and the stemmer. Hence
our system is capable of multi-language NLP and parameter-
based tailored representation computation.

NLP involves several subtasks containing tokenization,
tagging, term extraction, stemming, filtering and term fre-
quency calculation (see Figure 9).

1. Tokenizer: identifies words and sentences. A text is
transformed into a list of sentences, where each sen-
tence consists of a list of tokens. To avoid any misin-
terpretation of sentence borders our tokenizer supports
single- and multi-tokens, token typing, abbreviation
detection and special format lookup.

2. Tagger: assigns grammatical word categories (tags) to
words. This process is based on dictionary lookup,
lexical rules and contextual patterns.

3. Term extractor: only nouns and verbs are taken into
account to represent the content of a text. These are

recognized by using their tag information. Experi-
ments showed that including adjectives and adverbs
does not improve retrieval results.

4. Stemmer: reduces words to their roots (mainly by
eliminating ending characters). This step supports
similarity matching of different forms of the same word.
Also the number of terms is reduced considerable, en-
abling faster comparison calculation.

5. Filter: by means of a stop list containing undesirable
words, only meaningful words among those remaining
are retained. In the first version of our system the stop
list was constructed manually.

6. Term frequency calculation: simply counts how often
a stemmed term occurs within a document element.

NLP
natural .
language text Tokenizer B Tagger [Term extractor]
term frequency Term frquency || Filter || Stemmer
vector calculation

Figure 9: NLP component

One has to note that to this point the representations only
contain term frequencies, not term weights. To achieve a
maximum degree of dynamic indexing, term weighting itself
is accomplished during the retrieval phase only.

6.2 Rights management

During the input process the submitter of a document
decides which parts of the document have to be encrypted
(see Section 5.1). In particular the submitter selects which
nodes in the XML structure have to be encrypted by the
system. Therefore our approach realizes user defined read-
ing rights on nodes in XML documents. Document parts,
which are marked to be encrypted, are stored encrypted in
the database (as described in Section 6.3). Before storing,
each document node in the system gets a unique document
identifier. The keys used for the encryption are derived as
described in Section 5. Inheritance of reading rights within
the tree structure is provided by the property of the recursive
key derivation function. To achieve maximal flexibility on
the choice of using the encryption methods and block modes,
we suggest to use XML Encryption [17] on our mapped XML
documents conforming to our general XML document for-
mat. Besides, XML Encryption supports variable encoding
formats (e.g. Base64, UTF16). For the encryption and de-
cryption we propose to use the Advanced Encryption Stan-
dard (AES) [18]. The AES is relatively fast and as prevailing
encryption standard it has gained special security investiga-
tions.

Along with storing the documents in the database, the
system generates a notification which contains the document
identifier, the tree structure of the document and a list of
nodes which are encrypted. After mutual authentication be-
tween the system and the license server, the notification is
encrypted and sent to the license server. Later on, if users re-
quest documents from the search and retrieval component of
the system, desired documents are returned and transferred

to them as specified during the input process (encrypted,
partially encrypted or not encrypted).

In order to access encrypted document parts, appropriate
keys for decryption are necessary. There is no user admin-
istration at all: users/clients who have the appropriate keys
can decrypt the encrypted XML parts (if there are any).
Others can obtain them from the license server by sending a
request containing the document and node identifier. After
requesting, the license server indicates which requirements
has to be fulfilled (i.e. how many to pay) in order to ob-
tain the desired keys. For an independent accomplishment,
the license server also keeps the master key safe. With the
master key the license server can calculate the proper key
to any node in any document stored in the system.

6.3 Storage

The way documents are stored in IR-related systems plays
a decisive role on their performance and thus, on their accep-
tance. Especially in the context of structured documents ef-
ficiency during retrieval of elements of any granularity must
be provided. Therefore, we adopted a relational database
approach for storing the documents.

We depart from the idea of pre- and post-order introduced
in [11, 12]. The goal is to accelerate the access to vari-
ous structural neighbors of each element in the structure of
a document that are: descendants, ancestors, and siblings.
The access efficiency comes from the fact that pre-order and
post-order descriptors are unique for a given document and,
therefore, can be used conjointly with the ID of that docu-
ment as primary key in the mapped relational schema. Pre-
and post-order support non-recursive ancestor/descendant
detection and access. Figure 4 shows how pre-order (num-
ber to the left of an element) and post-order (number to the
right of an element) are inserted.

A structural entry is described by the tuple (docID,pre-
order,post-order,parentI D tagl D,pathID,encM encC) (see

Table 1). The root element has pre-order = 1 and parentID =

0 (no parent node) per definition. The tagID is included for
fast name lookup and access. For the sake of performance
we added the elements full path (without positional infor-
mation) pathID to circumvent recursive path generations
by using the parentID relation.

encM and encC are both boolean values which indicate
whether the set of metadata (encM) and/or the content
(encC) is/are stored encrypted. In case of content encryp-
tion all available representations are also encrypted. Hence
the encryption of nodes is based on inheritance, the same
encM and encC values are assigned to all descendant nodes.
Thus their metadata and contents are also encrypted the
same way as before, but with another key derived from the
parent node (see Section 5).

Inserting documents into the database is linear in time
and size of the input source. By using an event-based pars-
ing framework for XML documents like SAX [22], we are
guaranteed to need only very limited temporary space dur-
ing storing [11].

The content of XML nodes is stored in separate tables.
Hence not all structural elements consist of content them-
selves, content is not mandatory. As defined leaf nodes,
FRAGMENTs are consisting of content, so they have to be in-
serted in the content table (see Table 2). Other element
contents of inner nodes (SECTIONSs and DOCUMENTs) can be
calculated on the basis of the contained leaf nodes. Addi-

doc pre post par tag path encM encC

dy 1 36 0 Doc /D 0 0
dy 2 3 1 Sec /D/F 0 0
dy 4 7 1 Sec /D/S 0 0
dy 5 6 4 Fra /D/S/F 0 0
dy 8 25 1 Sec /D/S 0 0
dy 9 10 8 Fra /D/S/F 0 0
dy 11 18 8 Fra /D/S/S 1 1
dq 12 13 11 Fra /D/S/S/F 1 1
dq 14 15 11 Fra /D/S/S/F 1 1
do 1 70 0 Doc /Doc 1 0

Table 1: Structural entries

tionally these dynamically generated contents can also be
stored in the contents table. This leads to redundancy but
increases performance during retrieval. Two independent
content tables are maintained: one for storing the plain con-
tent and another one for storing the content representation.

doc pre cdata

d1 2 To begin with the number ...
dy 5 The content of document
d: 9 To improve performance
dy 12 XXXXXXXXXXXXXXXXXXXXXXX

Table 2: Content entries (plain content)

To improve performance user-defined metadata is treated
differently. Therefore, the database supports three levels
of metadata sets, each for one of the three main elements
(DOCUMENT, SECTION, and FRAGMENT). Instead of having sev-
eral structural entries with the same number of content en-
tries, a single row in a metadata table is used to store pooled
meta data.

Hence all structural elements (even DOCUMENTS) are uniquely
identified via docI D and pre-order, three different tables de-
fined by (docI D,pre-order,meta,metas,... ,metay) hold all
metadata (see Table 3). The basic reason of having only one
SECTION metadata set is that all SECTION elements (chapters,
sections, subsections, etc.) are assumed to have a quite ho-
mogenous set of meta elements (e.g. title). Although this
may lead to some ’NULL’ values (unstated elements) in the
database, the a whole set of metadata can be accessed by
a single database select statement. This simplifies database
like querying of metadata and accelerates access.

doc pre id author title

d1 1 K728 R. Smith In the summer

ds 1 XXXXX XXXXX XXXXXXXXXXXXXXXXXK
1

Table 3: Metadata entries (document level)

Each element is uniquely identified by its document ID

(docID) and element identifier (pre-order). Associated with
this pair are metadata sets (of all three main elements)
and content information (plain content and representation).
Both metadata and content entries are optional. Additional
kinds of representations (e.g. semantic concepts, figure rep-
resentations, etc.) can easily be integrated in this architec-
ture.

By using the document identifiers (resp. node identifies)
to derive keys on the fly, we do not need to store any keys
explicitly. This reduces key management efforts significantly
because the system does not have to take care of securing
new keys and locating old ones.

6.4 Search andretrieval

As soon as a query is sent to the system, the query text is
analyzed the same way the document elements were during
indexing, also resulting in a term frequency vector for the
query (see Figure 9). Besides the text of the query several
other parameters may be defined:

e The search units define which element levels are to be
matched against the query. This parameter has a deep
impact on retrieval time, hence it defines the number
of elements that are to be weighted and compared to
the query.

e The retrieval unit indicates which elements of the
result set are to be returned to the user.

e A maximum number of retrieval results parameter
can be used to truncate ranked retrieval results at a
certain level. A similar effect can be achieved by stat-
ing a minimum similarity parameter of the retrieved
elements, thus eliminating results below a given simi-
larity threshold.

During retrieval only specified (search units) and not en-
crypted document nodes are compared to the user query.
In order to calculate a similarity measure between an ele-
ment and the query term frequency vector the terms are
first mapped onto a common term space, consisting of all
terms known to the system. Then, both vectors (element
and query) are weighted according to the standard vector
space model [21]. Two weighted term vectors e and ¢ are
matched using the cosine similarity, given by Equation 9.

M=

(wi,e : wi,q)

q) — =1
k k
\/ wi,32 ' Z wi,q2
i=1 i=1

Here, wi q and w; . reflect the weight of term 7 in the query
vector g, respectively in the element vector e; k denotes the
total number of terms. More similar weighted vectors will
result in a higher cosine similarity. For further details see [4].

(9)

sim(e,

6.5 Ranking and result presentation

Ranking is the task by which similar units are retrieved
ordered by their relevance. The ranking process is impacted
strongly by the desired granularity (retrieval unit). For ex-
ample, if the user specifies the document level (focus), the
system should return only relevant documents. This can
be done by measuring the similarity of the query to all el-
ements of the document. The similarity of that document

to the query can then be either the similarity of the docu-
ment’s content (root node) generated recursively from the
descendants or the maximum similarity of the documents
units.

After all desired elements are matched against the user
query, the similarity values are used for ranking. The ranked
results are truncated at the maximum number of retrieval
results. Furthermore remaining elements not meeting the
minimum similarity criteria are removed.

We think of presenting the results to the user as a sorted
list of elements in decreasing order of their rank, where a
single result node can be selected. Because searched nodes
are not encrypted their plain content is directly displayed to
the user. If a user downloads a whole document, it is deliv-
ered as specified by the document owner during submission.
The keys for decryption can be requested from the license
server.

7. CONCLUSION

In this paper we presented a new approach for partial en-
cryption of XML documents in the context of structured
document retrieval. Document owners have the possibil-
ity to define parts of documents (XML nodes) as to be en-
crypted separately.

For structural disambiguation and performance reason in-
coming documents are mapped onto a general document
schema. This schema consists only of three main elements,
namely DOCUMENTs, SECTIONs and FRAGMENTs. After sub-
mission, documents conforming to this schema are indexed.
During this procedure all element nodes are analyzed and
their representations are calculated. According to the owner’s
rights specification marked elements (metadata, contents
and representations) are encrypted.

For the encryption and decryption process approved mech-
anisms like the AES can be used. In order to get the ap-
propriate keys for encryption and decryption of document
parts, a two level hashing approach is applied: first a docu-
ment key is derivated from the master key and a document
identifier using some hash function. Second we use the same
concept recursively to derive keys from a parent node to keys
belonging to its children nodes. Starting with the document
key, all keys for all nodes in that document can be computed.
This approach reduces key storage size to a minimum (mas-
ter key), and allows inheritance of rights within subtrees.

Afterwards the document is stored in the database (en-
crypted, partially encrypted or not encrypted). In the next
step the license server, which provides the keys for the client
side decryption, is notified about the new document. During
retrieval, document nodes are matched against a query and
a relevance measure for each node is calculated. This also
involves similarity based matching of metadata according to
their types. All results are listed to the user in decreasing
order of their relevance. By selecting a result, the system
displays the content of that document node. Additionally
a user can download a whole document. In this case it is
re-generated from the database and sent to the user. Thus it
may also include encrypted parts as intended by the owner.
In order to access these parts a user can request decryp-
tion keys from the license server. The decryption process is
shifted completely to the client side (user).

Because all documents in the system are stored encrypted
as defined by the owner, bypassing the system logic and
attacking the storage directly is useless. In addition to this

key management is kept as simple as possible, and no kind
of user management is needed. Furthermore the system is
freed of evaluating any rights at all.

8.
[1]

[2

[10]

[11]

[12]

[13]

REFERENCES

Mohammad Abolhassani, Norbert Fuhr, Norbert
Govert, and Kai Grossjohann, HyREX: Hypermedia
retrieval engine for XML, Research report, University
of Dortmund, Department of Computer Science,
Dortmund, Germany, 2002.

S. Akl and P. Taylor, Cryptographic Solutions to a
Problem of Access Control in a Hierarchy, ACM
Transactions on Computer Systems, ACM, 1983,

pp. 239-248.

T. Arnold-Moore, M. Fuller, A. Kent, R. Sacks-Davis,
and Neil Sharman, Architecture of a Content
Management Server for XML Document Applications,
1st International Conference on Web Information
Systems Engineering (WISE00), IEEE, 2000.

Ricardo Baeza-Yates and Berthier Ribeiro-Neto,
Modern information retrieval, Addison Wesley, ACM
Press, New York, Essex, England, 1999.

T.S. Chen, Y.F. Chung, and C.S. Tian, A Novel Key
Management Scheme for Dynamic Access Control in a
User Hierarchy, Proceedings of the 28th Annual
International Computer Software and Applications
Conference (COMPSACO04), IEEE, 2004.

H. Dobbertin, A. Bosselaers, and B. Preneel, The hash
function RIPEMD-160, wuw.esat .kuleuven.ac.be/
“bosselae/ripemd160.html, 1996.

eXtensible rights Markup Language,
http://www.xrml.org/, 2005.

N. Ferguson and B. Schneier, Practical cryptography,
Wiley Publishing, 2003.

Norbert Fuhr, Norbert Govert, and Kai Grossjohann,
HyREX: Hyper-media retrieval engine for XML,
Proceedings of the 25th Annual International
Conference on Research and Development in
Information Retrieval (New York) (Kalervo Jarvelin,
Micheline Beaulieu, Ricardo Baeza-Yates, and

Sung Hyon Myaeng, eds.), ACM, 2002,
Demonstration, p. 449.

Norbert Govert, Bilingual information retrieval with
HyREX and Internet translation services,
Cross-Language Information Retrieval and Evaluation
(Heidelberg et al.) (Carol Peters, ed.), Lecture Notes
in Computer Science, vol. 2069, Springer, 2001,

pp. 237-244.

Torsten Grust, Accelerating XPath location steps,
Proceedings of the 2002 ACM SIGMOD international
conference on Management of data, ACM Press, 2002,
pp. 109-120.

Djoerd Hiemstra, A database approach to
content-based XML retrieval, INitiative for the
Evaluation of XML Retrieval (INEX). Proceedings of
the First INEX Workshop. Dagstuhl, Germany,
December 8-11, 2002 (Sophia Antipolis, France)
(Norbert Fuhr, Norbert Govert, Gabriella Kazai, and
Mounia Lalmas, eds.), ERCIM Workshop Proceedings,
ERCIM, March 2003, pp. 111-118.

P. Jones, RFC 317} - US Secure Hash Algorithm 1
(SHA1), waw.faqs.org/rfcs/rfc3174.html, 2001.

10

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]
[23]

[24]

[25]

[26]

G. Kazai, M. Lalmas, and T. Rélleke, Focussed
structured document retrieval, Proceedings of the 9
Retrieval (SPIRE 2002), Springer, 2002, pp. 241-247.
H. Krawczyk, M. Bellare, and R. Canetti, RFC 210/ -
HMAC: Keyed-Hashing for Message Authentication,
www.fags.org/rfcs/rfc2104.html, 1997.

T. Kunkelmann and R. Brunelli, Advanced Indezing
and Retrieval in Present-day Content Management
Systems, Proceedings of the 28th Euromicro
Conference (EUROMICRO02), IEEE, 2002.

Joseph Reagle, W8C XML Encryption WG,
http://www.w3.org/Encryption/2001/, 2001.
Vincent Rijmen, The block cipher Rijndael,
http://csrc.nist.gov/CryptoToolkit/aes/, 2004.
R. Rivest, RFC 1321 - The MD5
Message-Digest-Algorithm,
www.fags.org/rfcs/rfc1321.html, 1992.

G. Salton, The smart retrieval system - experiments in
automatic document processing, Prentice Hall Inc.,
Englewood Cliffs, NJ, 1971.

G. Salton and M. E. Lesk, Computer evaluation of
indezing and text processing, Journal of the ACM 15
(1968), no. 1, 8-36.

SAX (Simple API for XML),
http://sax.sourceforge.net, 2005.

B. Schneier, Applied cryptography, John Wiley and
sons, 1996.

X. Wang, Y. L. Yin, and H. Yu, Collision Search
Attacks on SHAI,
http://cryptome.org/shal-attacks.htm, 2005.
Ross Wilkinson, Effective retrieval of structured
documents, Proceedings of the 17th annual
international ACM SIGIR conference on Research and
development in information retrieval, Springer-Verlag
New York, Inc., 1994, pp. 311-317.

Ross Wilkinson and Justin Zobel, Comparison of
fragmentation schemes for document retrieval,
Overview of the Third Text REtrieval Conference
(TREC-3). NIST Special Publication 500-225,
National Institute of Standards and Technology
(Donna K. Harman, ed.), 1994, pp. 81-84.

